Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2

Abstract

The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine1 and behavioural responses to stress2, and the related hormone urocortin3 (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2 (refs 4,5). These receptors may exhibit distinct functions due to unique tissue distribution6 and pharmacology4,5. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses7,8. Here we generate Crhr2−/− mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2−/− mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2−/− mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2–/– mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2−/− mice following Ucn, but Crhr2−/− mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2−/− mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2−/− mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Crhr2−/− mice.
Figure 2: Crhr2−/− mice have altered HPA responses to stress.
Figure 3: Crhr2−/− mice show aberrant coping behaviour without concomitant alterations in anxiety or activity.
Figure 4: Crhr2−/− mice show altered feeding responses to Ucn.
Figure 5: Ucn increases cardiac function in wild-type but not Crhr2−/− mice.

Similar content being viewed by others

References

  1. Vale, W., Speiss, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  Google Scholar 

  2. Sutton, R.E., Koob, G.F., Moal, M.L., Rivier, J. & Vale, W. Corticotropin-releasing factor produces fear-enhancing behavioral activation in rats. J. Neurosci. 10, 176–183 (1982).

    Google Scholar 

  3. Vaughan, J. et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292 (1995).

    Article  CAS  Google Scholar 

  4. Stenzel, P. et al. Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. Mol. Endocrinol. 9, 637–645 (1995).

    CAS  PubMed  Google Scholar 

  5. Chen, R., Lewis, K., Perrin, M. & Vale, W.W. Expression cloning of a human corticotropin-releasing-factor receptor. Proc. Natl Acad. Sci. USA 90, 8967–8971 (1993).

    Article  CAS  Google Scholar 

  6. Chalmers, D.T., Lovenberg, T.W. & DeSouza, E.B. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15, 6340–6350 (1995).

    Article  CAS  Google Scholar 

  7. Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor. Nature Genet. 19, 162–166 (1998).

    Article  CAS  Google Scholar 

  8. Smith, G.W. et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    Article  CAS  Google Scholar 

  9. Heldwein, K.A., Redick, D.L., Rittenberg, M.B., Claycomb, W.C. & Stenzel-Poore, M.P. Corticotropin-releasing hormone receptor expression and functional coupling in neonatal cardiac myocytes and AT-1 cells. Endocrinology 137, 3631–3639 (1996).

    Article  CAS  Google Scholar 

  10. Parkes, D., Rivest, S., Lee, S., Rivier, C. & Vale, W. Corticotropin-releasing factor activates c-fos, NGFI-B, and corticotropin-releasing factor gene expression within the paraventricular nucleus of the rat hypothalamus. Mol. Endo. 7, 1357–1367 (1993).

    CAS  Google Scholar 

  11. Ono, N., Bedran, D.E., Castro, J.C. & McCann, S.M. Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc. Natl Acad. Sci. USA 82, 3528–3531 (1985).

    Article  CAS  Google Scholar 

  12. Bale, T.L. et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Genet. 24, 410–414 (2000).

    Article  CAS  Google Scholar 

  13. Liebsch, G., Landgraf, R., Engelmann, M., Lorscher, P. & Holsboer, F. Differential behavioral effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J. Psychiatr. Res. 33, 153–163 (1999).

    Article  CAS  Google Scholar 

  14. Spruijt, B.M., van Hooff, J.A.R.A.M. & Gispen, W.H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992).

    Article  CAS  Google Scholar 

  15. McEwen, B.S. Stress, adaptation and disease: allostasis and allostatic load. Ann. NY Acad. Sci. 840, 33–44 (1998).

    Article  CAS  Google Scholar 

  16. Spina, M. et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 273, 1561–1564 (1996).

    Article  CAS  Google Scholar 

  17. Arase, K., York, D.A., Shimizu, H., Shargill, N. & Bray, G.A. Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am. J. Physiol. 255, E255–E259 (1988).

    CAS  PubMed  Google Scholar 

  18. Woods, S.C., Seeley, R.J. & Porte, D. Jr & Schwartz, M.W. Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383 (1998).

    Article  CAS  Google Scholar 

  19. Overton, J.M. & Fisher, L.A. Differentiated hemodynamic responses to central versus peripheral administration of corticotropin-releasing factor in conscious rats. J. Auton. Nerv. Syst. 35, 43–52 (1991).

    Article  CAS  Google Scholar 

  20. Okosi, A. et al. Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides 32, 167–171 (1998).

    Article  CAS  Google Scholar 

  21. Grunt, M. et al. Dilatory and inotropic effects of corticotropin-releasing factor (CRF) on the isolated heart. Horm. Metab. Res. 24, 56–59 (1992).

    Article  CAS  Google Scholar 

  22. Parkes, D.G., Vaughan, J., Rivier, J., Vale, W. & May, C.N. Cardiac inotropic actions of urocortin in conscious sheep. Am. J. Physiol. 272, H2115–H2122 (1997).

    CAS  PubMed  Google Scholar 

  23. Fentzke, R.C. et al. Evalulation of ventricular and arterial hemodynamics in anesthetized closed-chest mice. J. Am. Soc. Echocardiogr. 10, 915–925 (1997).

    Article  CAS  Google Scholar 

  24. Warltier, D.C. & Pagel, P.S. Cardiovascular and respiratory actions of desflurane: is desflurane different from isoflurane? Anesth. Analg. 75 (suppl.), S17–29 (1992).

    CAS  PubMed  Google Scholar 

  25. Miyakoda, G., Yoshida, A., Takisawa, H. & Nakamura, T. β-Adrenergic regulation of contractility and protein phosphorylation in spontaneously beating isolated rat myocardial cells. J. Biochem. 102, 211–224 (1987).

    Article  CAS  Google Scholar 

  26. Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1997).

    Google Scholar 

  27. Gu, G., Varoqueaux, F. & Simerly, R.B. Hormonal regulation of glutamate receptor gene expression in the anteroventral periventricular nucleus of the hypothalamus. J. Neurosci. 19, 3213–3222 (1999).

    Article  CAS  Google Scholar 

  28. Wagoner, L.E. et al. Lysis of adult ventricular myocytes by cells infiltrating rejecting murine cardiac allografts. Circulation 93, 111–119 (1996).

    Article  CAS  Google Scholar 

  29. Fukamizu, A. et al. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J. Biol. Chem. 268, 11617–11621 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Lee and A. Contarino for discussing relevant and unpublished data; and J. Auld, W. Yeung and Q. Yue for assistance. This work was supported by National Institute of Health grants HL55512 (M.P.S.-P.), HL45043 (A.R.H.), HD30236 (M.J.L.), 2T32EY07123 (K.A.H.), AI14985 (M.B.R.) and an American Heart Association Fellowship (S.C.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Stenzel-Poore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coste, S., Kesterson, R., Heldwein, K. et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24, 403–409 (2000). https://doi.org/10.1038/74255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing