Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α

Abstract

Importin α is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin α has been determined at 2.5 Å resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin β-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin β conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of mouse importin α.
Figure 2: Comparison of mouse and yeast importin α.
Figure 3: Mechanism of autoinhibition.
Figure 4: Mechanism of autoinhibition.
Figure 5: Schematic diagram illustrating the proposed NLS-dependent import pathway.
Figure 6: NLS-binding determinants.
Figure 7: Armadillo and HEAT repeats.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cole, C.N. & Hammel, C.M. Nucleocytoplasmic transport: driving and directing transport. Curr. Biol. 8, R368–R372 (1998).

    Article  CAS  Google Scholar 

  2. Gorlich, D. Transport into and out of the nucleus. EMBO J. 17, 2721–2727 (1998).

    Article  CAS  Google Scholar 

  3. Imamoto, N., Kamei, Y. & Yoneda, Y. Nuclear transport factors: function, behavior and interaction. Eur. J. Histochem. 42, 9– 20 (1998).

    CAS  PubMed  Google Scholar 

  4. Izaurralde, E. & Adam, S. Transport of macromolecules between the nucleus and the cytoplasm. RNA 4, 351 –364 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattaj, I.W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265 –306 (1998).

    Article  CAS  Google Scholar 

  6. Melchior, F. & Gerace, L. Two-way trafficking with Ran. Trends Cell Biol. 8, 175–179 (1998).

    Article  CAS  Google Scholar 

  7. Moroianu, J. Distinct nuclear import and export pathways mediated by members of the karyopherin beta family. Cell. Biochem. 70, 231– 239 (1998).

    Article  CAS  Google Scholar 

  8. Ohno, M., Fornerod, M. & Mattaj, I.W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327–336 (1998).

    Article  CAS  Google Scholar 

  9. Pemberton, L.F., Blobel, G. & Rosenblum, J.S. Transport routes through the nuclear pore complex. Curr. Opin. Cell Biol. 10, 392– 399 (1998).

    Article  CAS  Google Scholar 

  10. Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem. Sci. 23, 185–189 (1998).

    Article  CAS  Google Scholar 

  11. Wozniak, R.W., Rout, M.P. & Aitchison, J.D. Karyopherins and kissing cousins. Trends Cell Biol. 8, 184–188 ( 1998).

    Article  CAS  Google Scholar 

  12. Dingwall, C. & Laskey, R.A. Nuclear targeting sequences — a consensus? Trends Biochem. Sci. 16, 478 –481 (1991).

    Article  CAS  Google Scholar 

  13. Gorlich, D., Henklein, P., Laskey, R.A. & Hartmann, E. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).

    Article  CAS  Google Scholar 

  14. Weis, K., Ryder, U. & Lamond, A.I. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J. 15, 1818–1825 (1996).

    Article  CAS  Google Scholar 

  15. Moroianu, J., Blobel, G. & Radu, A. The binding site of karyopherins alpha for karyopherin beta overlaps with a nuclear localization sequence. Proc. Natl. Acad. Sci. USA 93, 6572–6576 (1996).

    Article  CAS  Google Scholar 

  16. Peifer, M., Berg, S. & Reynolds, A.B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789– 791 (1996).

    Article  Google Scholar 

  17. Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871– 882 (1997).

    Article  CAS  Google Scholar 

  18. Kobe, B. Leucines on a roll. Nature Struct. Biol. 3, 977–980 (1996).

    Article  CAS  Google Scholar 

  19. Andrade, M.A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nat. Genet. 11, 115– 116 (1995).

    Article  CAS  Google Scholar 

  20. Malik, H.S., Eickbush, T.H. & Goldfarb, D.S. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl. Acad. Sci. USA 94, 13738–13742 (1997).

    Article  CAS  Google Scholar 

  21. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherins alpha. Cell 94, 193–204 ( 1998).

    Article  CAS  Google Scholar 

  22. Kobe, B. et al. Giant protein kinases: domain interactions and structural basis of autoregulation. EMBO J. 15, 6810– 6821 (1996).

    Article  CAS  Google Scholar 

  23. Kussel, P. & Frasch, M. Yeast Srp1, a nuclear protein related to Drosophila and mouse pendulin, is required for normal migration, division, and integrity of nuclei during mitosis. Mol. Gen. Genet. 248, 351–363 (1995).

    Article  CAS  Google Scholar 

  24. Kobe, B. & Deisenhofer, J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186 (1995).

    Article  CAS  Google Scholar 

  25. Barden, J.A., Sehgal, P. & Kemp, B.E. Structure of the pseudosubstrate recognition site of chicken smooth muscle myosin light chain kinase. Biochim. Biophys. Acta 1292, 106–112 ( 1996).

    Article  Google Scholar 

  26. Kissinger, C.R. et al. Crystal structures of human calcineurin and the human FKBP12–FK506–calcineurin complex. Nature 378, 641– 644 (1995).

    Article  CAS  Google Scholar 

  27. Khan, A.R. & James, M.N.G. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

    Article  CAS  Google Scholar 

  28. Kobe, B. et al. Structural basis of autoregulation of phenylalanine hydroxylase. Nature Struct. Biol. in the press (1999 ).

  29. Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114 –4126 (1998).

    Article  CAS  Google Scholar 

  30. Boche, I. & Fanning, E. Nucleocytoplasmic recycling of the nuclear localization signal receptors alpha subunit in vivo is dependent on a nuclear export signal, energy, and RCC1. J. Cell Biol. 139, 313–325 (1997).

    Article  CAS  Google Scholar 

  31. Nigg, E.A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787 ( 1997).

    Article  CAS  Google Scholar 

  32. Makkerh, J.P.S., Dingwall, C. & Laskey, R.A. Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 6, 1025–1027 ( 1996).

    Article  CAS  Google Scholar 

  33. Jans, D.A. & Hubner, S. Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol. Rev. 76, 651–685 (1996).

    Article  CAS  Google Scholar 

  34. Hubner, S., Xiao, C.Y. & Jans, D.A. The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J. Biol. Chem. 272, 17191– 17195 (1997).

    Article  CAS  Google Scholar 

  35. Ruediger, R., Hentz, M., Fait, J., Mumby, M. & Walter, G. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J. Virol. 68, 123–129 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tiganis, T., Flint, A.J., Adam, S.A. & Tonks, N.K. Association of the T-cell protein tyrosine phosphatase with nuclear import factor p97. J. Biol. Chem. 272, 21548–21557 (1997).

    Article  CAS  Google Scholar 

  37. Henderson, B.R. & Percipalle, P. Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-beta. J. Mol. Biol. 274, 693–707 ( 1997).

    Article  CAS  Google Scholar 

  38. Jones, E.Y. MHC class I and class II structures. Curr. Opin. Immunol. 9, 75–79 (1997).

    Article  CAS  Google Scholar 

  39. Teh, T., Tiganis, T. & Kobe, B. Crystallization of importin α, the nuclear import receptor. Acta Crystallogr. D D55, 561–536 (1999).

    CAS  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Bergdoll, M. & Kjeldgaard, M. In Crystallographic and modeling methods in molecular design (eds Bugg, C.E. & Ealick, S.E.) 189– 195 (Springer-Verlag, New York; 1990).

    Book  Google Scholar 

  42. DeLano, W.L. & Brünger, A.T. The direct rotation function: rotational Patterson correlation search applied to molecular replacement. Acta Crystallogr. D 51, 740– 748 (1995).

    Article  CAS  Google Scholar 

  43. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 475 (1992).

    Article  Google Scholar 

  44. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D 49, 129– 147 (1993).

    Article  CAS  Google Scholar 

  45. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  46. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  47. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  48. Merritt, E.A. & Murphy, M.E.P. Raster3D Version 2—a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  49. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  50. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  51. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  52. Chelsky, D., Ralph, R. & Jonak, G. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol. Cell. Biol. 9, 2487 –2492 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank T. Teh, T. Tiganis, M. Lam, B. Kemp, J. Horne and T. Gleichmann for help and discussions, and J. Kuriyan and coworkers for making the coordinates of yeast Kapα50 available on their web site before the release by the Protein Data Bank. I apologize to those whose original publications could not be cited because of space limitations. This work was supported by the Wellcome Trust and the National Health and Medical Research Council; B.K. is a Wellcome Senior Research Fellow in Medical Science in Australia.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat Struct Mol Biol 6, 388–397 (1999). https://doi.org/10.1038/7625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing