Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice

Abstract

The specification of area identities in the cerebral cortex is a complex process, primed by intrinsic cortical cues and refined after the arrival of afferent fibers from the thalamus. Little is known about the genetic control of the early steps of this process, but the distinctive expression pattern of the homeogene Emx2 in the developing cortex has prompted suggestions that it is critical in this context. We tested this hypothesis using Emx2 −/− mice. We found that the normal spectrum of cortical areal identities was encoded in these mutants, but areas with caudal–medial identities were reduced and those with anterior–lateral identities were relatively expanded in the cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression patterns of Id3, Cad6 and Lamp in normal (wf) and Emx2−/− developing cerebral cortices.
Figure 2: Expression of the NGF receptor p75 in normal and mutant cortices.
Figure 3: Distribution of H-2Z1 transgene-driven β-galactosidase activity in neocortical explants from wild-type and Emx2−/− brains.
Figure 4: Proliferating cells and CKI-p21-expressing cells at the medial edge of wild-type and Emx2−/− cerebral cortices.
Figure 5: Thalamocortical connections in wild-type and Emx2−/− mutant embryos.
Figure 6: Radial distribution of anti-BrdU immunoreactivity in proliferative layers of E15 wild-type and Emx2−/− cerebral cortices, after a 30-minute pulse.

Similar content being viewed by others

References

  1. Barbe, M. F. & Levitt, P. The early commitment of fetal neurons to the limbic cortex. J. Neurosci. 11, 519 –533 (1991).

    Article  CAS  Google Scholar 

  2. Barbe, M. F. & Levitt, P. Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant. Proc. Natl. Acad. Sci. USA 89, 3706– 3710 (1992).

    Article  CAS  Google Scholar 

  3. Gitton, Y., Cohen-Tannoudji, M. & Wassef, M. Specification of somatosensory area identity in cortical explants. J. Neurosci. 19, 4889– 4898 (1999).

    Article  CAS  Google Scholar 

  4. Rakic, P. Specification of cerebral cortical areas. Science 241 , 170–176 (1988).

    Article  CAS  Google Scholar 

  5. Ferri, R. T. & Levitt, P. Cerebral cortical progenitors are fated to produce region-specific neuronal populations. Cereb. Cortex 3, 187–198 ( 1993).

    Article  CAS  Google Scholar 

  6. Arimatsu, Y. et al. Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc. Natl. Acad. Sci. USA 89 , 8879–8883 (1992).

    Article  CAS  Google Scholar 

  7. Miyashita-Lin, E. M., Hevner, R., Montzka Wassarmann, K., Martinez, S. & Rubenstein, J. L. R. Early neocortical regionalization in the absence of thalamic innervation. Science 285 , 906–909 (1999).

    Article  CAS  Google Scholar 

  8. Van der Loos, H. & Woolsley, T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395–398 ( 1973).

    Article  CAS  Google Scholar 

  9. Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).

    Article  CAS  Google Scholar 

  10. Mallamaci, A. et al. EMX2 protein in the developing mouse brain and olfactory area . Mech. Dev. 77, 165–172 (1998).

    Article  CAS  Google Scholar 

  11. Pellegrini, M., Mansouri, A., Simeone, A., Boncinelli, E. & Gruss, P. Dentate gyrus formation requires Emx2. Development 122, 3893– 3898 (1996).

    CAS  PubMed  Google Scholar 

  12. Cohen-Tannoudji, M., Morello, D. & Babinet, C. Unexpected position-dependent expression of H-2 and beta 2-microglobulin/lacZ transgenes. Mol. Reprod. Dev. 33, 149–159 (1992).

    Article  CAS  Google Scholar 

  13. Cohen-Tannoudji, M., Babinet, C. & Wassef, M. Early determination of a mouse somatosensory cortex marker. Nature 368, 460– 463 (1994).

    Article  CAS  Google Scholar 

  14. Riechmann, V. & Sablitzky, F. Mutually exclusive expression of two dominant-negative helix-loop-helix (dnHLH) genes, Id4 and Id3, in the developing brain of the mouse suggests distinct regulatory roles of these dnHLH proteins during cellular proliferation and differentiation of the nervous system. Cell Growth Differ. 6, 837–843 (1995).

    CAS  PubMed  Google Scholar 

  15. Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877– 10885 (1999).

    Article  CAS  Google Scholar 

  16. Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity . Cereb. Cortex 9, 524– 532 (1999).

    Article  CAS  Google Scholar 

  17. Levitt, P. Amonoclonal antibody to limbic system neurons. Science 223, 299–301 (1984).

    Article  CAS  Google Scholar 

  18. Zacco A. et al. Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional neural circuits. J. Neurosci. 10, 73–90 (1990 ).

    Article  CAS  Google Scholar 

  19. Pimenta, A. F. et al. The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting. Neuron 15, 287–297 ( 1995).

    Article  CAS  Google Scholar 

  20. Allendoerfer, K. L., Shelton, D. L., Shooter, E. M. & Shatz, C. J. Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex. Proc. Natl. Acad. Sci. USA 87, 187–190 (1990).

    Article  CAS  Google Scholar 

  21. Mackarehtschian, K., Lau, C. K., Caras, I. & McConnell, S. Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb. Cortex 9, 601–610 (1999).

    Article  CAS  Google Scholar 

  22. Bayer, S. A. & Altman, J. Neocortical Development (Raven, New York, 1991).

  23. Schlessinger, A. R., Cowan, W. M. & Swanson, L. W. The time of origin of neurons in Ammon's horn and the associated retrohippocampal fields. Anat. Embryol. 154, 153–173 (1978).

    Article  CAS  Google Scholar 

  24. Stanfield, B. B. & Cowan, W. M. The development of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185, 423–459 (1979).

    Article  CAS  Google Scholar 

  25. Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704 ( 1993).

    Article  CAS  Google Scholar 

  26. Fukuda, T. et al. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats. J. Comp. Neurol. 382, 141–152 ( 1997).

    Article  CAS  Google Scholar 

  27. Molnar, Z., Adams, R. & Blackmore, C. Mechanisms underlying the establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    Article  CAS  Google Scholar 

  28. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The cell cycle in the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  Google Scholar 

  29. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J. Neurosci. 15, 6058–6068 (1995).

    Article  CAS  Google Scholar 

  30. Eagleson, K. L., Lilien, L., Chan, A. V. & Levitt, P. Mechanisms specifying area fate in cortex include cell-cycle-dependent decisions and the capacity of progenitors to express phenotype memory. Development 124, 1623–1630 (1997).

    CAS  PubMed  Google Scholar 

  31. Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  32. Briata, P. et al. EMX1 homeoprotein is expressed in cell nuclei of the developing cerebral cortex and in the axons of the olfactory sensory neurons. Mech. Dev. 57, 169–180 ( 1996).

    Article  CAS  Google Scholar 

  33. Bishop, K. M., Goudreau, G. & O'Leary, D. D. M. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 228, 344–349 (2000).

    Article  Google Scholar 

  34. Mallamaci, A. et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex . J. Neurosci. 20, 1109– 1118 (2000).

    Article  CAS  Google Scholar 

  35. Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat. Cell Biol. 1, 461–466 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marion Wassef, who provided us with H-2Z1 transgenic mice, Pier Carlo Marchisio for the gift of the anti-CKIp21 antibody, F. Rathjen for the gift of the anti-L1 antibody, Celia Leonor Pardini for in situ hybridizations and Mario Berardi for anti-L1 immunohistochemistry. This work was supported by grants from the European Community BIOTECH and BIOMED Programmes, the Telethon-Italia Programme, the Italian Association for Cancer Research (AIRC), the Armenise-Harvard Foundation, the British Council-CRUI Joint Research Program and the Wellcome Trust (grant number 059370 to J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Mallamaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallamaci, A., Muzio, L., Chan, CH. et al. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat Neurosci 3, 679–686 (2000). https://doi.org/10.1038/76630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing