Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for phosphoserine-proline recognition by group IV WW domains

Abstract

Pin1 contains an N-terminal WW domain and a C-terminal peptidyl-prolyl cis-trans isomerase (PPIase) domain connected by a flexible linker. To address the energetic and structural basis for WW domain recognition of phosphoserine (P.Ser)/phosphothreonine (P.Thr)- proline containing proteins, we report the energetic and structural analysis of a Pin1–phosphopeptide complex. The X-ray crystal structure of Pin1 bound to a doubly phosphorylated peptide (Tyr-P.Ser-Pro-Thr-P.Ser-Pro-Ser) representing a heptad repeat of the RNA polymerase II large subunit's C-terminal domain (CTD), reveals the residues involved in the recognition of a single P.Ser side chain, the rings of two prolines, and the backbone of the CTD peptide. The side chains of neighboring Arg and Ser residues along with a backbone amide contribute to recognition of P.Ser. The lack of widespread conservation of the Arg and Ser residues responsible for P.Ser recognition in the WW domain family suggests that only a subset of WW domains can bind P.Ser-Pro in a similar fashion to that of Pin1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall architecture of human Pin1.
Figure 2: The Pin1–CTD peptide binding interface.
Figure 3: Representative WW domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sudol, M. Prog. Biophys. Mol. Biol. 65, 113–132 (1996).

    Article  CAS  Google Scholar 

  2. Chen, H.I., et al. J. Biol. Chem. 272, 17070–17077 (1997).

    Article  CAS  Google Scholar 

  3. Ermekova, K.S., et al. J. Biol. Chem. 272, 32869–32877 (1997).

    Article  CAS  Google Scholar 

  4. Bedford, M.T., Reed, R. & Leder, P. Proc. Natl. Acad. Sci. USA 95, 10602–10607 (1998).

    Article  CAS  Google Scholar 

  5. Lu, P.J., Zhou, X.Z., Shen, M.S. & Lu, K.P. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  6. Komuro, A., Saeki, M. & Kato, S. J. Biol. Chem. 274, 36513–36519 (1999).

    Article  CAS  Google Scholar 

  7. Beford, M.T., Sarbassova, D., Xu, J., Leder, P. & Yaffe, M.B. J. Biol. Chem. 275, 10359–10369 (2000).

    Article  Google Scholar 

  8. Crenshaw, D.G., Yang, J., Means, A.R. & Kornbluth, S. EMBO J. 17, 1315–1327 (1998).

    Article  CAS  Google Scholar 

  9. Shen, M., Stukenberg, P.T., Kirschner, M.W. & Lu, K.P. Genes Dev. 12, 706–720 (1998).

    Article  CAS  Google Scholar 

  10. Wells, N.J., et al. J. Cell. Sci. 112, 3361–3371 (1999).

    CAS  PubMed  Google Scholar 

  11. Lu, P.J., Wulf, G., Zhu, X.Z., Davies, P. & Lu, K.P. Nature 399, 784–788 (1999).

    Article  CAS  Google Scholar 

  12. Hani, J., et al. J. Biol. Chem. 274, 108–116 (1999).

    Article  CAS  Google Scholar 

  13. Albert, A., Lavoie, S. & Vincent, M. J. Cell Sci. 112, 2493–2500 (1999).

    CAS  PubMed  Google Scholar 

  14. Komuro, A., Saeki, M. & Kato, S. Nucleic Acids Res. 27, 1957–1965 (1999).

    Article  CAS  Google Scholar 

  15. Morris, D.P., Phatnani, H.P. & Greenleaf, A.L. J. Biol. Chem. 274, 31583–31587 (1999).

    Article  CAS  Google Scholar 

  16. Steinmetz, E.J. Cell 89, 491–494 (1997).

    Article  CAS  Google Scholar 

  17. Ho, C.K. & Shuman, S. Mol. Cell 3, 405–411 (1999).

    Article  CAS  Google Scholar 

  18. Chang, A., Cheang, S., Espanel, X. & Sudol, M. J. Biol. Chem. April 25 [epub ahead of print] (2000).

  19. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  20. Yaffe, M.B., et al. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  21. Plowman, G.D., Sudarsanam, S., Bingham, J., Whyte, D. & Hunter, T. Proc. Natl. Acad. Sci. USA 96, 13603–13610 (1999).

    Article  CAS  Google Scholar 

  22. Kuriyan, J. & Cowburn, D. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).

    Article  CAS  Google Scholar 

  23. Yaffe, M., et al. Cell 91, 961–971 (1997).

    Article  CAS  Google Scholar 

  24. Liao, H., Byeon, I.L. & Tsai, M.D. J. Mol. Biol. 294, 1041–1049 (1999).

    Article  CAS  Google Scholar 

  25. Macias, M.J., et al. Nature 382, 646–649 (1996).

    Article  CAS  Google Scholar 

  26. Huang, X. et al. Nature Struct. Biol. 7, 634–638 (2000).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Navaza, J. Acta Crystallogr. A 50,157–163 (1994).

    Article  Google Scholar 

  29. Brunger, A.T., et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. D 49, 148–157 (1993).

    Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Vinson, V.K., De La Cruz, E.M., Higgs, H.N. & Pollard, T.D. Biochemistry 37, 10871–10880 (1998).

    Article  CAS  Google Scholar 

  33. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Noel lab and the staff of the Stanford Synchrotron Radiation Laboratory (SSRL) for assistance during data collection at beamline 9-1, R.D. Mullins and L. Blanchoin for guidance with the fluorescence measurements, and S. Richards for assistance with molecular replacement. We are especially grateful to M. Sudol and M.J. Eck for communicating their results prior to publication. The SSRL Biotechnology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. This work was supported by a USPHS grant awarded to J.P.N. T.H. is a Frank and Else Schilling American Cancer Society Professor. K.P.L. is a Pew Scholar and a Leukemia Society of America Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Noel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdecia, M., Bowman, M., Lu, K. et al. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Mol Biol 7, 639–643 (2000). https://doi.org/10.1038/77929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing