Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Observing single biomolecules at work with the atomic force microscope

Abstract

Progress in the application of the atomic force microscope (AFM) to imaging and manipulating biomolecules is the result of improved instrumentation, sample preparation methods and image acquisition conditions. Biological membranes can be imaged in their native state at a lateral resolution of 0.5–1 nm and a vertical resolution of 0.1–0.2 nm. Conformational changes that are related to functions can be resolved to a similar resolution, complementing atomic structure data acquired by other methods. The unique capability of the AFM to directly observe single proteins in their native environments provides insights into the interactions of proteins that form functional assemblies. In addition, single molecule force spectroscopy combined with single molecule imaging provides unprecedented possibilities for analyzing intramolecular and intermolecular forces. This review discusses recent examples that illustrate the power of AFM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface topograph of the major intrinsic proteins (MIP) from lens fiber cells recorded in buffer22.
Figure 2: Quantitative analyses of the native cytoplasmic purple membrane surface.
Figure 3: RNA polymerase at work34.
Figure 4: Conformational change and single molecule force spectroscopy of the HPI layer38,47.
Figure 5: Conformational changes of porin OmpF18.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C.F. & Gerber, C. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. Mou, J.X., Yang, J. & Shao, Z.F. J. Mol. Biol. 248, 507–512 (1995).

    Article  CAS  Google Scholar 

  3. Müller, D.J., Amrein, M. & Engel, A. J. Struct. Biol. 119, 172–188 (1997).

    Article  Google Scholar 

  4. Czajkowsky, D.M., Sheng, S. & Shao, Z. J. Mol. Biol. 276, 325–330 (1998).

    Article  CAS  Google Scholar 

  5. Scheuring, S., Müller, D.J., Ringler, P., Heymann, J.B. & Engel, A. J. Microsc. 193, 28–35 (1999).

    Article  CAS  Google Scholar 

  6. Müller, D.J., Fotiadis, D., Scheuring, S., Müller, S.A. & Engel, A. Biophys. J. 76, 1101–1111 (1999).

    Article  PubMed Central  Google Scholar 

  7. Möller, C., Allen, M., Elings, V., Engel, A. & Müller, D.J. Biophys. J. 77, 1050–1058 (1999).

    Article  Google Scholar 

  8. Hansma, P.K. et al. Appl. Phys. Lett. 64, 1738–1740 (1994).

    Article  CAS  Google Scholar 

  9. Han, W., Lindsay, S.M., Dlakic, M. & Harrington, R.E. Nature 386, 563 (1997).

    Article  CAS  Google Scholar 

  10. Viani, M.B. et al. J. Appl. Phys. 86, 2258–2262 (1999).

    Article  CAS  Google Scholar 

  11. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Science 276, 1109–1112 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  12. Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E. & Fernandez, J.M. Trends Biochem. Sci. 24, 379–384 (1999).

    Article  CAS  Google Scholar 

  13. Oesterhelt, F. et al. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  14. Müller, D.J. & Engel, A. Biophys. J. 73, 1633–1644 (1997).

    Article  PubMed Central  Google Scholar 

  15. Rotsch, C. & Radmacher, M. Langmuir 13, 2825–2832 (1997).

    Article  CAS  Google Scholar 

  16. Butt, H.-J., Jaschke, M. & Ducker, W. Bioelect. Bioenerg. 38, 191–201 (1995).

    Article  CAS  Google Scholar 

  17. Heinz, W.F. & Hoh, J.H. Nanotechnology 17, 143–150 (1999).

    CAS  Google Scholar 

  18. Müller, D.J. & Engel, A. J. Mol. Biol. 285, 1347–1351 (1999).

    Article  Google Scholar 

  19. Müller, D.J., Sass, H.-J., Müller, S., Büldt, G. & Engel, A. J. Mol. Biol. 285, 1903–1909 (1999).

    Article  Google Scholar 

  20. Scheuring, S. et al. EMBO J. 18, 4981–4987 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  21. Seelert, H. et al. Nature 405, 418–419 (2000).

    Article  CAS  Google Scholar 

  22. Fotiadis, D. et al. J. Mol. Biol. 300, 779–789 (2000).

    Article  CAS  Google Scholar 

  23. Heymann, J.B. et al. J. Struct. Biol. 128, 243–249 (1999).

    Article  CAS  Google Scholar 

  24. Heymann, J.B. et al. Structure Folding Des. 8, 643–653 (2000).

    Article  CAS  Google Scholar 

  25. Jones, P.C., Jiang, W. & Fillingame, R.H. J. Biol. Chem. 273, 17178–17185 (1998).

    Article  CAS  Google Scholar 

  26. Jones, P.C. & Fillingame, R.H. J. Biol. Chem. 273, 29701–29705 (1998).

    Article  CAS  Google Scholar 

  27. Groth, G. & Walker, J.E. FEBS Lett. 410, 117–123 (1997).

    Article  CAS  Google Scholar 

  28. Dmitriev, O.Y., Jones, P.C. & Fillingame, R.H. Proc. Natl. Acad. Sci. USA 96, 7785–7790 (1999).

    Article  CAS  Google Scholar 

  29. Rastogi, V.K. & Girvin, M.E. Nature 402, 263–268 (1999).

    Article  CAS  Google Scholar 

  30. Stock, D., Leslie, A.G. & Walker, J.E. Science 286, 1700–1705 (1999).

    Article  CAS  Google Scholar 

  31. Song, L. et al. Science 274, 1859–1866 (1996).

    Article  CAS  Google Scholar 

  32. Reviakine, I., Bergsma-Schutter, W. & Brisson, A. J Struct Biol 121, 356–361 (1998).

    Article  CAS  Google Scholar 

  33. Malkin, A.J., Kuznetsov, Y.G. & McPherson, A. J. Struct. Biol. 117, 124–137 (1996).

    Article  CAS  Google Scholar 

  34. Kasas, S. et al. Biochem. 36, 461–468 (1997).

    Article  CAS  Google Scholar 

  35. Guthold, M. et al. Biophys. J. 77, 2284–2294 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  36. Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T. & Cooper, G.J.S. J. Mol. Biol. 285, 33–39 (1999).

    Article  CAS  Google Scholar 

  37. Viani, M.B. et al. Nature Struct. Biol. 7, 644–647 (2000).

    Article  CAS  Google Scholar 

  38. Müller, D.J., Baumeister, W. & Engel, A. J. Bacteriol. 178, 3025–3030 (1996).

    Article  PubMed Central  Google Scholar 

  39. Cowan, S.W. et al. Nature 358, 727–733 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  40. Klebba, P.E. & Newton, S.M. Curr. Opin. Microbiol. 1, 238–247 (1998).

    Article  CAS  Google Scholar 

  41. Hansma, H.G. et al. Science 256, 1180–1184 (1992).

    Article  CAS  Google Scholar 

  42. Hoh, J.H., Sosinsky, G.E., Revel, J.-P. & Hansma, P.K. Biophys. J. 65, 149–163 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  43. Schabert, F.A., Henn, C. & Engel, A. Science 268, 92–94 (1995).

    Article  CAS  Google Scholar 

  44. Thalhammer, S., Stark, R.W., Muller, S., Wienberg, J. & Heckl, W.M. J Struct Biol 119, 232–237 (1997).

    Article  CAS  Google Scholar 

  45. Fotiadis, D. et al. J. Mol. Biol. 283, 83–94 (1998).

    Article  CAS  Google Scholar 

  46. Fisher, T.E., Marszalek, P.E. & Fernandez, J.M. Nature Struct. Biol. 7, 719–724 (2000).

    Article  CAS  Google Scholar 

  47. Müller, D.J., Baumeister, W. & Engel, A. Proc. Natl. Acad. Sci. USA 96, 13170–13174 (1999).

    Article  Google Scholar 

  48. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  Google Scholar 

  49. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L. & Lieber, C.M. Nature 394, 52–55 (1998).

    Article  CAS  Google Scholar 

  50. Schurmann, G., Noell, W., Staufer, U. & de Rooij, N.F. Ultramicroscopy 82, 33–38 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank D. Fotiadis for Fig. 1 and H. Hansma for the time-lapse series shown in Fig. 3. This work was supported by the Maurice E. Müller Foundation of Switzerland, and the Swiss National Foundation for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Engel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, A., Müller, D. Observing single biomolecules at work with the atomic force microscope. Nat Struct Mol Biol 7, 715–718 (2000). https://doi.org/10.1038/78929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing