Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons

Abstract

Precise synaptogenesis is crucial to brain development, and depends on the ability of specific partner cells to locate and communicate with one another. Dynamic properties of axonal filopodia during synaptic targeting are well documented, but the cytomorphological dynamics of postsynaptic cells have received less attention. In Drosophila embryos, muscle cells bear numerous postsynaptic filopodia (‘myopodia’) during motoneuron targeting. Here we show that myopodia are actin-filled microprocesses, which progressively clustered at the site of motoneuron innervation while intermingling with presynaptic filopodia. In prospero mutants, which have severe delays in axon outgrowth from the CNS, myopodia were present initially but clustering behavior was not observed, demonstrating that clustering depends on innervating axons. Thus, postsynaptic filopodia are capable of intimate interaction with innervating presynaptic axons. We propose that, by contributing to direct long-distance cellular communication, they are dynamically involved in synaptic matchmaking.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myopodia extend from muscle cells.
Figure 2: Coincidence of myopodia clustering and innervation.
Figure 3: Dependence of myopodia clustering on axons.

Similar content being viewed by others

References

  1. Goodman, C. S. Mechanisms and molecules that control growth cone guidance. Annu. Rev. Neurosci. 19, 341–377 (1996).

    Article  CAS  Google Scholar 

  2. Zheng, J. Q., Wan, J. & Poo, M.-M. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci. 16, 1140–1149 (1996).

    Article  CAS  Google Scholar 

  3. Kater, S. B. & Rehder, V. The sensory-motor role of growth cone filopodia. Curr. Opin. Neurobiol. 5, 68–74 (1995).

    Article  CAS  Google Scholar 

  4. Saitoe, Y., Song, W.-J. & Murakami, F. Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J. Neurosci. 17, 8792–8803 (1997).

    Article  Google Scholar 

  5. Smith, S. J. Dissecting dendritic dynamics. Science 283, 1860–1861 (1999).

    Article  CAS  Google Scholar 

  6. Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

    Article  CAS  Google Scholar 

  7. Lendvail, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  Google Scholar 

  8. Wu, G. Y., Zou, D. J., Rajan, I. & Cline, H. Dendritic dynamics in vivo change during neuronal maturation. J. Neurosci. 19, 4472–4483 (1999).

    Article  CAS  Google Scholar 

  9. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  10. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  Google Scholar 

  11. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  12. Keshishian, H., Broadie, K., Chiba, A. & Bate, M. The Drosophila neuromuscular junction: a model for studying synaptic development and function. Annu. Rev. Neurosci. 19, 545–575 (1996).

    Article  CAS  Google Scholar 

  13. Chiba, A. Early development of Drosophila neuromuscular junction: a model for studying neuronetwork development. Intl. Rev. Neurobiol. 43, 1–24 (1999).

    Article  CAS  Google Scholar 

  14. Suzuki, E., Rose, D. & Chiba, A. The ultrastructural interactions of identified pre- and postsynaptic cells during synaptic target recognition in Drosophila embryos. J. Neurobiol. 43, 448–459 (2000).

    Article  Google Scholar 

  15. Bate, M. The embryonic development of larval muscles in Drosophila. Development 110, 791–804 (1990).

    CAS  PubMed  Google Scholar 

  16. Yoshihara, M., Rheuben, M. B. & Kidokoro, Y. Transition from growth cone to functional motor nerve terminal in Drosophila embryos. J. Neurosci. 17, 8408–8426 (1997).

    Article  CAS  Google Scholar 

  17. Bate, M. in The Development of Drosophila Melanogaster (eds. Bate, C. M. & Martinez Arias, A.) 1013–1090 (Cold Spring Harbor Press, New York, 1993).

    Google Scholar 

  18. Johansen, J., Halpern, M. E. & Keshishian, H. Axonal guidance and the development of muscle fiber-specific innervation in Drosophila embryos. J. Neurosci. 9, 4318–4332 (1989).

    Article  CAS  Google Scholar 

  19. Verkhusha, V. V., Tsukita, S. & Oda, H. Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP-actin fusion protein. FEBS Lett. 445, 395–401 (1999).

    Article  CAS  Google Scholar 

  20. Murray, M. J. & Whitington, P. M. Effects of roundabout on growth cone dynamics, filopodial length, and growth cone morphology at the midline and throughout the neuropile. J. Neurosci. 19, 7901–7912 (1999).

    Article  CAS  Google Scholar 

  21. Landgraf, M., Bossing, T., Technau, G. M. & Bate, M. The origin, location, and projections of the embryonic abdominal motoneurons of Drosophila. J. Neurosci. 17, 9642–9655 (1997).

    Article  CAS  Google Scholar 

  22. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941–953 (1991).

    Article  CAS  Google Scholar 

  23. Grabham, P. W. & Goldberg, D. J. Nerve growth factor stimulates the accumulation of β1 integrin at the tips of filopodia in the growth cones of sympathetic neurons. J. Neurosci. 17, 5455–5465 (1997).

    Article  CAS  Google Scholar 

  24. Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development 125, 453–461 (1998).

    CAS  PubMed  Google Scholar 

  25. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).

    Article  CAS  Google Scholar 

  26. Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549–2561 (1999).

    Article  CAS  Google Scholar 

  27. Luo, L. et al. Differential effects of the Rac GTPase on the Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  Google Scholar 

  28. Chiba, A. Live visualization of neurons and muscles inside an embryo. Cell Technol. 18, 852–853 (1999).

    Google Scholar 

  29. Moriyoshi, K., Richards, L., Akazawa, C., O'Leary, D. & Nakanishi, S. Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16, 255–260 (1996).

    Article  CAS  Google Scholar 

  30. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451–464 (1991).

    Article  CAS  Google Scholar 

  31. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila Melanogaster (Springer, Berlin, 1985).

    Book  Google Scholar 

  32. Broadie, K. S. & Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144–166 (1993).

    Article  CAS  Google Scholar 

  33. Suzuki, E. & Hirosawa, K. Immunolocalization of a Drosophila phosphatidylinositol transfer protein (rdgB) in normal and rdgA mutant photoreceptor cells with special reference to the subrhabdomeric cisternae. J. Electron Microsc. 43, 183–189 (1994).

    CAS  Google Scholar 

  34. Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Article  CAS  Google Scholar 

  35. Wolf, B. & Chiba, A. Axon pathfinding proceeds normally despite disrupted growth cone decisions at CNS midline. Development 127, 2001–2009 (2000).

    CAS  PubMed  Google Scholar 

  36. Grenningloh, G., Rehm, E. J. & Goodman, C. S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell 67, 45–57 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Vladislav Verkusha and Hiroki Oda (University of Kyoto), Andrea Brand (Cambridge University) and Chris Doe (University of Oregon) for gifts of fly stocks, Mike Kim and Xiaomao Zhu (University of Illinois) for help with data collection and Tom Kornberg and Felipe Ramirez-Weber (UCSF), Jim Campanelli (University of Illinois) and members of the Chiba lab for comments on the manuscript. This work was supported by grants from CREST JST (E.S.) and from NIH, NSF and the Lucille P. Markey Charitable Trust (A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Chiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritzenthaler, S., Suzuki, E. & Chiba, A. Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 3, 1012–1017 (2000). https://doi.org/10.1038/79833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing