Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine -1-phosphate therapy

Abstract

The time at which ovarian failure (menopause) occurs in females is determined by the size of the oocyte reserve provided at birth, as well as by the rate at which this endowment is depleted throughout post-natal life. Here we show that disruption of the gene for acid sphingomyelinase in female mice suppressed the normal apoptotic deletion of fetal oocytes, leading to neonatal ovarian hyperplasia. Ex vivo, oocytes lacking the gene for acid sphingomyelinase or wild-type oocytes treated with sphingosine-1-phosphate resisted developmental apoptosis and apoptosis induced by anti-cancer therapy, confirming cell autonomy of the death defect. Moreover, radiation-induced oocyte loss in adult wild-type female mice, the event that drives premature ovarian failure and infertility in female cancer patients, was completely prevented by in vivo therapy with sphingosine-1-phosphate. Thus, the sphingomyelin pathway regulates developmental death of oocytes, and sphingosine-1-phosphate provides a new approach to preserve ovarian function in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Post-natal oocyte hyperplasia results from disruption of SMPD1.
Figure 2: SMPD1 deficiency or S1P treatment attenuates apoptosis in female germ cells during fetal gametogenesis.
Figure 3: Cell-autonomous nature of the oocyte death defect caused by disruption of SMPD1 or treatment with S1P.
Figure 4: The protective actions of S1P in oocytes are not mimicked by LPA and are insensitive to pertussis toxin.
Figure 5: In vivo S1P administration protects ovaries from radiation-induced damage.
Figure 6: Protection of ovaries by S1P during radiotherapy in vivo yields oocytes with normal embryonic developmental potential.

Similar content being viewed by others

References

  1. Gougeon, A. Regulation of ovarian follicular development in primates: facts and hypotheses . Endocr. Rev. 17, 121– 155 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Baker, T.G. A quantitative and cytological study of germ cells in human ovaries. Proc. R. Soc. Lond. (B) 158, 417–433 (1963).

    Article  CAS  Google Scholar 

  3. Perez, G.I. et al. Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nature Genet. 21, 200–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Morita, Y. & Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev. Biol. 213, 1–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Gosden, G.G & Faddy, M.J. Biological basis of premature ovarian failure. Reprod. Fertil. Dev. 10, 73–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Hammond, C.B. Menopause and hormone replacement therapy: an overview. Obstet. Gynecol. 87, 2S–15S ( 1996).

    Article  CAS  PubMed  Google Scholar 

  7. Waxman, J. Chemotherapy and the adult gonad: a review. J. Royal Soc. Med. 76, 144–148 ( 1983).

    Article  CAS  Google Scholar 

  8. Ried, H.L. & Jaffe, N. Radiation-induced changes in long-term survivors of childhood cancer after treatment with radiation therapy. Sem. Roentgenol. 29, 6– 14 (1994).

    Article  CAS  Google Scholar 

  9. Blumenfeld, Z., Avivi, I., Ritter, M. & Rowe, J.M. Preservation of fertility and ovarian function and minimizing chemotherapy-induced gonadotoxicity in young women. J. Soc. Gynecol. Investig. 6, 229–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Reynolds, T. Cell death genes may hold clues to preserving fertility after chemotherapy . J. Natl. Cancer Inst. 91, 664– 666 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Rudin, C.M. & Thompson, C.B. Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu. Rev. Med. 48, 267–281 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  12. Thornberry, N.A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Xiang, J., Chao, D.T. & Korsmeyer, S.J. BAX-induced cell death may not require interleukin-1β-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93 , 14559–14563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolesnick, R.N. & Kronke, M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60, 643–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Spiegel, S. et al. Sphingosine-1-phosphate in cell growth and death. Ann. N.Y. Acad. Sci. 845, 11–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Olivera, A. et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol. 147, 545–558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800 –803 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Horinouchi, K. et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nature Genet. 10, 288–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Morita, Y. et al. Requirement for phosphatidylinositol-3′-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology 140, 941–949 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T. & Merrill, A.H. Inhibition of sphingolipid biosynthesis by fumonisins. J. Biol. Chem. 266, 14486 –14490 (1991).

    CAS  PubMed  Google Scholar 

  22. Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Perez, G.I., Tao, X.-J. & Tilly, J.L. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol. Hum. Reprod. 5, 414–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Van Brocklyn, J.R. et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell Biol. 142, 229– 240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Brocklyn, J.R., Tu, Z., Edsall, L.C., Schmidt, R.R. & Spiegel, S. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. J. Biol. Chem. 274, 4626– 4232 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Edsall, L.C., Pirianov, G.G. & Spiegel, S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J. Neurosci. 17, 6952–6960 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goetzl, E.J. & An, S. A subfamily of G protein-coupled cellular receptors for lysophospholipids and lysosphingolipids. Adv. Exp. Med. Biol. 469, 259–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Hla, T. et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem. Pharmacol. 58, 201–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, M.J. et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99, 301–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Dong, J. et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531– 535 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Gosden, R.G. The vocabulary of the egg. Nature 383, 485 –486 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Jurisicova, A., Varmuza, S. & Casper, R.F. Involvement of programmed cell death in preimplantation embryo demise. Hum. Reprod. Update 1, 558–566 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Hardy, K. Apoptosis in the human embryo. Rev. Reprod. 4, 125–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Perez, G.I., Trbovich, A.M., Gosden R.G. & Tilly, J.L. Mitochondria and the death of oocytes. Nature 403, 500–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ratts, V.S., Flaws, J.A., Kolp, R., Sorenson, C.M. & Tilly, J.L. Ablation of bcl-2 gene expression decreases the number of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 136, 3665–3668 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Perez, G.I., Knudson, C.M., Leykin, L., Korsmeyer, S.J. & Tilly, J.L. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nature Med. 3, 1228– 1332 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Morita, Y., Perez, G.I., Maravei, D.V., Tilly, K.I. & Tilly, J.L. Targeted expression of Bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapy-induced oocyte apoptosis in vitro. Mol. Endocrinol. 13, 841–850 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  38. Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304– 1314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ding, H.F. & Fisher, D.E. Mechanisms of p53-mediated apoptosis. Crit. Rev. Oncog. 9, 83– 98 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Cuvillier, O., Rosenthal, D.S., Smulson, M.E. & Spiegel, S. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 273 , 2910–2916 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Pastorino, J.G. et al. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 31734–31739 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  42. Lantz, M.E. in Cancer Obstetrics and Gynecology (eds. Trimble, E.L. & Trimble, C.L.) 87–98 (Lippincott Williams and Wilkins, Philadelphia, 1999).

    Google Scholar 

  43. Morita, Y. & Tilly, J.L. Segregation of retinoic acid effects on fetal ovarian germ cell mitosis versus apoptosis by requirement for new macromolecular synthesis. Endocrinology 140 , 2696–2703 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. He, X. et al. Characterization of human acid sphingomyelinase purified from the media of overexpressing Chinese hamster ovary cells. Biochim. Biophys. Acta 1432, 251–264 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  45. Jürgensmeier, J.M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 4997–5002 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fairbairn, D.W., Olive, P.L. & O'Neill, K.L. The comet assay: a comprehensive overview . Mutat. Res. 339, 37–59 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. Schiff for discussions after his critical review of the manuscript before its submission, and S. Riley for technical assistance with the image analysis and data presentation. This study was supported by National Institutes of Health grants R01-AG12279 (J.L.T.), R01-HD34226 (J.L.T.), R01-ES08430 (J.L.T.) and R01- CA423852 (R.N.K.), and by Vincent Memorial Research Funds (J.L.T.). This work was done while Y.M. was on leave from the Department of OB/GYN of the University of Tokyo Faculty of Medicine and supported by the Japanese Society for the Promotion of Science, and while G.I.P. was supported in part by a grant from the Harvard Center of Excellence in Women's Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Tilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, Y., Perez, G., Paris, F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine -1-phosphate therapy. Nat Med 6, 1109–1114 (2000). https://doi.org/10.1038/80442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing