Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two cis-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting

Abstract

Dendritic localization of the α subunit of Ca2+/calmodulin-dependent protein kinase II (αCaMKII) mRNA in CNS neurons requires its 3′ untranslated region (3′UTR). We investigated this targeting mechanism by identifying two cis-acting elements in the 3′UTR. One is a 30-nucleotide element that mediated dendritic translocation. A homologous sequence in the 3′UTR of neurogranin, transcripts of which also reside in dendrites, also funtioned in cis to promote its dendritic transport. Other putative elements in the αCaMKII mRNA inhibit its transport in a resting state. This inhibition was removed in depolarized neurons, and such activity-dependent derepression was a primary requirement for their dendritic targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloning of αCaMKII 3′UTR.
Figure 2: Expression plasmids containing GFP open reading frame and various regions of αCaMKII transcript, used to identify cis-acting element for dendritic targeting.
Figure 3: Characterization of a cis-acting element for dendritic localization of αCaMKII transcripts.
Figure 4: Membrane depolarization alters dendritic localization of the transcripts containing αCaMKII 3′UTRs.
Figure 5: Common cis elements for dendritic mRNA localization in αCaMKII and neurogranin (Ng).

Similar content being viewed by others

References

  1. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA 93, 13445–13452 (1996).

    Article  CAS  Google Scholar 

  2. Frey, U. & Morris, G. M. Synaptic tagging: implication for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188 ( 1998).

    Article  CAS  Google Scholar 

  3. Steward, O. mRNA localization in neurons: a multipurpose mechanism? Neuron 18, 9–12 (1997 ).

    Article  CAS  Google Scholar 

  4. Kuhl, D. & Skehel, P. Dendritic localization of mRNAs. Curr. Opin. Neurobiol. 8, 600–606 (1998).

    Article  CAS  Google Scholar 

  5. Benson, D. I., Gall, C. M. & Isackson, P. J. Dendritic localization of type II calcium calmodulin-dependent protein kinase mRNA in normal and reinnervated rat hippocampus. Neuroscience 46, 851–857 (1992).

    Article  CAS  Google Scholar 

  6. Burgin, K. E. et al. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci. 10, 1788–1798 (1990).

    Article  CAS  Google Scholar 

  7. Garner, C. C., Tucker, R. P. & Matus, A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 366, 674 –677 (1988).

    Article  Google Scholar 

  8. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites . Neuron 14, 433–445 (1995).

    Article  CAS  Google Scholar 

  9. Miyashiro, K., Dichter, M. & Eberwine, J. On the nature and differential distribution of mRNAs in hippocampal neurites: implication for neuronal functioning. Proc. Natl. Acad. Sci. USA 91, 10800– 10804 (1994).

    Article  CAS  Google Scholar 

  10. Racca, C., Gardiol, A. & Triller, A. Dendritic and postsynaptic localizations of glycine receptor alpha subunit mRNAs. J. Neurosci. 19, 1691–1700 (1997).

    Article  Google Scholar 

  11. Steward, O. & Reeves, T. M. Protein synthetic machinery beneath postsynaptic sites on CNS neurons: association between polyribosomes and other organelles at the synaptic site. J. Neurosci. 8, 176–184 (1988).

    Article  CAS  Google Scholar 

  12. Tiedge, H. & Brosius, J. Translational machinery in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 7171–7181 (1996).

    Article  CAS  Google Scholar 

  13. Tiedge, H., Bloom, F. E. & Richter, D. RNA, whither goest thou? Science 283, 186–187 (1999).

    Article  CAS  Google Scholar 

  14. Schuman, E. M. mRNA trafficking and local protein synthesis at the synapse. Neuron 23, 645–648 ( 1999).

    Article  CAS  Google Scholar 

  15. Kiebler, M. A. & DesGrosseillers, L. Molecular insight into mRNA transport and local translation in the mammlian nervous system. Neuron 25, 19–28 (2000).

    Article  CAS  Google Scholar 

  16. Rao, A. & Steward, O. Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J. Neurosci. 11, 2881–2895 (1991).

    Article  CAS  Google Scholar 

  17. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21, 1129–1139 ( 1998).

    Article  CAS  Google Scholar 

  18. Bangi, C., Mannucci, L., Dotti, C. G. & Amaldi, F. Chemical stimulation of synaptosomes modulates α-Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. J. Neurosci. 20, RC76 (2000).

    Article  Google Scholar 

  19. Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M. & Kennedy, M. B. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–7833 (1999).

    Article  CAS  Google Scholar 

  20. Kang, H. & Schuman, E. A requirement for local protein synthesis in neurotrophin induced hippocampal synaptic plasticity. Science 273, 1402–1406 ( 1996).

    Article  CAS  Google Scholar 

  21. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage . Cell 91, 927–938 (1997).

    Article  CAS  Google Scholar 

  22. Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 ( 1999).

    Article  CAS  Google Scholar 

  23. St. Johnston, D. The intracellular localization of messenger RNAs. Cell 81, 161–170 (1995).

    Article  CAS  Google Scholar 

  24. Oleynikov, Y. & Singer, R. H. RNA localization: different zipcodes, same postman? Trends Cell Biol. 8, 381– 383 (1998).

    Article  CAS  Google Scholar 

  25. Ainger, K. et al. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell Biol. 123, 431–441 (1993).

    Article  CAS  Google Scholar 

  26. Ainger, K. et al. Transport and localization elements in myelin basic protein mRNA. J. Cell Biol. 138, 1077– 1087 (1997).

    Article  CAS  Google Scholar 

  27. Hoek, K. S., Kidd, G. S., Carson, J. H. & Smith, R. hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37, 7021– 7029 (1998).

    Article  CAS  Google Scholar 

  28. Blichenberg, A. et al. Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J. Neurosci. 19, 8818– 8829 (1999).

    Article  CAS  Google Scholar 

  29. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Deficient hippocampal long term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 201– 206 (1992).

    Article  CAS  Google Scholar 

  30. Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870– 1874 (1999).

    Article  CAS  Google Scholar 

  31. Mayford, M., Baranes, D., Podsypanina, K. & Kandel, E. R. The 3′-untranslated region of CAMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc. Natl. Acad. Sci. USA 93, 13250–13255 (1996).

    Article  CAS  Google Scholar 

  32. Severt, W. L. et al. The suppression of testis-brain RNA binding protein and kinesin heavy chain disrupts mRNA sorting in dendrites. J. Cell Sci. 112, 3691–3702 (1999).

    CAS  PubMed  Google Scholar 

  33. Muslimov, I. A. et al. RNA transport in dendrites: a cis-acting targeting element is contained within neuronal BC1 RNA. J. Neurosci. 17, 4722–4733 (1997).

    Article  CAS  Google Scholar 

  34. Brocke, L., Srinivasan, M. & Schulman, H. Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain . J. Neurosci. 15, 6797– 6808 (1995).

    Article  CAS  Google Scholar 

  35. Knowles, R. B. et al. Translocation of RNA granules on living neurons. J. Neurosci. 16, 7812–7820 (1996).

    Article  CAS  Google Scholar 

  36. Tongiorgi, E., Righi, M. & Cattaneo, A. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17, 9492–9505 (1997).

    Article  CAS  Google Scholar 

  37. Righi, M., Tongiorgi, E. & Cattaneo, A. Brain-derived neurotrophic factor (BDNF) induces dendritic targeting of BDNF and tyrosine kinase B mRNAs in hippocampal neurons through a phosphatidylinositol-3 kinase-dependent pathway. J. Neurosci. 20, 3165–3174 ( 2000).

    Article  CAS  Google Scholar 

  38. Landry, C. F., Watson, J. B., Kashima, T. & Campagnoni, A. T. Cellular influences on RNA sorting in neurons and glia; an in situ hybridization histochemical study. Mol. Brain Res. 27, 1–11 (1994).

    Article  CAS  Google Scholar 

  39. Chakravarthy, B., Morley, P. & Whitfield, J. Ca2+-calmodulin and protein kinase Cs: a hypothetical synthesis of their conflicting convergences on shared substrate domains. Trends Neurosci. 22, 12– 16 (1999).

    Article  CAS  Google Scholar 

  40. Bashirullah, A., Cooperstock, R. I., & Lipshitz, H. D. RNA localization in development. Annu. Rev. Biochem. 67, 335–394 (1998).

    Article  CAS  Google Scholar 

  41. Roegiers, F. & Jan, Y. N. Staufen: a common component of mRNA transport in oocytes and neurons? Trends Cell Biol. 10, 220–224 (2000).

    Article  CAS  Google Scholar 

  42. Rook, M. S., Lu, M. & Kosik, K. S. CaMKIIa 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    Article  CAS  Google Scholar 

  43. Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L. & Singer, R. H. Characterization of a beta-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17, 2158–2165 (1997).

    Article  CAS  Google Scholar 

  44. Deshler, J. O., Highett, M. I., Abramson, T. & Schnapp, B. J. A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr. Biol. 23, 489– 496 (1998).

    Article  Google Scholar 

  45. Soderling, T. R. & Derkach, V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23 , 75–80 (2000).

    Article  CAS  Google Scholar 

  46. Imaizumi, K. et al. Specific cholinergic destruction in the basal magnocellular nucleus and impaired passive avoidance behavior of rodents Brain Res. 551, 36–43 ( 1991).

    Article  CAS  Google Scholar 

  47. Gomi, F. et al. Molecular cloning of a novel membrane glycoprotein, Pal, specifically expressed in photoreceptor cells of retina and containing leucine-rich repeat . J. Neurosci. 20, 3206– 3213 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Matsuoka and Y. Yoneda for technical advice and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutake Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, Y., Imaizumi, K., Katayama, T. et al. Two cis-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting. Nat Neurosci 3, 1079–1084 (2000). https://doi.org/10.1038/80591

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing