Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations

Abstract

In addition to rod photoreceptor loss, many mutations in rod photoreceptor-specific genes cause degeneration of other neuronal types. Identifying mechanisms of cell–cell interactions initiated by rod-specific mutations and affecting other retinal cells is important for understanding the pathogenesis and progression of retinal degeneration. Here we show in animals with rod and cone degeneration due to mutations in the genes encoding rhodopsin and cGMP phosphodiesterase β-subunit (PDE-β) respectively, that rod bipolar cells received ectopic synapses from cones in the absence of rods. Thus, synaptic plasticity links certain rod-specific mutations to retina-wide structural alterations that involve different types of neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross sections of 10-month-old normal and P347L porcine retinas stained with anti-PKCα antibody using the immunoperoxidase method showed survival of rod bipolar cells and alterations in their dendritic appearance.
Figure 2: Synaptophysin immunoreactivity used for the visualization of surviving cone terminals.
Figure 3: Cross sections of P347L retinas double-immunostained with anti-PKCα antibody (green, FITC) and anti-synaptophysin antibody (red, rhodamine) revealed ectopic synaptic contacts between dendrites of surviving rod bipolar cells and cone terminals.
Figure 4: Two types of contact made by the ectopic cone–rod bipolar cell synapses.
Figure 5: Expression of the Go G protein by rod bipolar cells.
Figure 6: Survival of cones and rod bipolar cells in degenerated rd retinas.
Figure 7: Cross sections of 18-day-old rd retina double-immunostained with anti-PKCα antibody (green, FITC) and anti-synaptophysin antibody (red, rhodamine) revealed ectopic synaptic contacts between dendrites of surviving rod bipolar cells and cone terminals.
Figure 8: Rod bipolar cell dendrites made ectopic flat contacts with cone terminals in degenerated rd retinas.

Similar content being viewed by others

References

  1. Rattner, A., Sun, H. & Nathans, J. Molecular genetics of human retinal disease. Annu. Rev. Genet. 33, 89–131 (1999).

    Article  CAS  Google Scholar 

  2. Berson, E. L. Retinitis pigmentosa. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 34, 1659–1676 (1993).

    CAS  PubMed  Google Scholar 

  3. Dryja, T. P. & Berson, E. L. Retinitis pigmentosa and allied diseases: implications of genetic heterogeneity. Invest. Ophthalmol. Vis. Sci. 36, 1197–1200 (1995).

    CAS  PubMed  Google Scholar 

  4. Bird, A. C. Retinal photoreceptor dystrophies. Am. J. Ophthalmol. 119, 543–562 (1995).

    Article  CAS  Google Scholar 

  5. Gal, A., Apfelstedt-Sylla, E., Janecke, A. R. & Zrenner, E. Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog. Ret. Eye Res. 16, 51–79 (1997).

    Article  CAS  Google Scholar 

  6. Santos, A. et al. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch. Ophthalmol. 115, 511–515 (1997).

    Article  CAS  Google Scholar 

  7. Humayun, M. S. et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 40, 143–148 (1999).

    CAS  PubMed  Google Scholar 

  8. Cideciyan, A. V. & Jacobson, S. G. Negative electroretinograms in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 34, 3253–3263 (1993).

    CAS  PubMed  Google Scholar 

  9. Sieving, P. A. Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans. Am. Ophthalmol. Soc. 91, 701–773 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang, G. Q., Hao, Y. & Wong, F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11, 595–605 (1993).

    Article  CAS  Google Scholar 

  11. Portera-Cailliau, C., Sung, C.-H., Nathans, J. & Adler, R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 91, 974–978 (1994).

    Article  CAS  Google Scholar 

  12. Lolley, R. N., Rong, H. & Craft, C. M. Linkage of photoreceptor degeneration by apoptosis with inherited defect in phototransduction. Invest. Ophthalmol. Vis. Sci. 35, 358–362 (1994).

    CAS  PubMed  Google Scholar 

  13. Huang, P. C., Gaitan, A. E., Hao, Y., Petters, R. M. & Wong, F. Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc. Natl. Acad. Sci. USA 90, 8484–8488 (1993).

    Article  CAS  Google Scholar 

  14. Kedzierski, W., Bok, D. & Tavis, G. H. Non-cell autonomous photoreceptor degeneration in rds mutant mice mosaic for expression of a rescue transgene. J. Neurosci. 18, 4076–4082 (1998).

    Article  CAS  Google Scholar 

  15. Petters, R. M. et al. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 15, 965–970 (1997).

    Article  CAS  Google Scholar 

  16. Farber, D. B., Flannery, J. G. & Bowes-Rickman, C. . The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration. Prog. Retinal Eye Res. 13, 31–64 (1994).

    Article  CAS  Google Scholar 

  17. Wässle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–480 (1991).

    Article  Google Scholar 

  18. Sterling, P. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 205–253 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  19. Sharp, L. T. & Stockman, A. Rod pathways: the importance of seeing nothing. Trends Neurosci. 22, 497–504 (1999).

    Article  Google Scholar 

  20. Dowling, J. E. The Retina: an Approachable Part of the Brain (Harvard Univ. Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  21. Negishi, K., Kato, S. & Teranishi, T. Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci. Lett. 94, 247–253 (1988).

    Article  CAS  Google Scholar 

  22. Greferath, U., Grunert, U. & Wässle, H. Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J. Comp. Neurol. 301, 433–442 (1990).

    Article  CAS  Google Scholar 

  23. Wässle, H., Yamashita, M., Greferath, U., Grunert, U. & Muller, F. The rod bipolar cell of the mammalian retina. Vis. Neurosci. 7, 99–112 (1991).

    Article  Google Scholar 

  24. Grunert, U., Martin, P. R. & Wässle, H. Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J. Comp. Neurol. 348, 607–627 (1994).

    Article  CAS  Google Scholar 

  25. Wässle, H., Grunert, U. & Rohrenbeck, J. Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J. Comp. Neurol. 332, 407–420 (1993).

    Article  Google Scholar 

  26. Casini, G., Rickman, D. W. & Brecha, N. C. AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J. Comp. Neurol. 356, 132–142 (1995).

    Article  CAS  Google Scholar 

  27. Brandstatter, J. H., Lohrke, S., Morgans, C. W. & Wässle, H. Distributions of two homologous synaptic vesicle proteins, synaptoporin and synaptophysin, in the mammalian retina. J. Comp. Neurol. 370, 1–10 (1996).

    Article  CAS  Google Scholar 

  28. Ong, O. C., et al. Molecular cloning and characterization of the G protein gamma subunit of cone photoreceptors. J. Biol. Chem. 270, 8495–8500 (1995).

    Article  CAS  Google Scholar 

  29. Masu, M. et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757–765 (1995).

    Article  CAS  Google Scholar 

  30. Vardi, N. Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J. Comp. Neurol. 395, 43–52 (1998).

    Article  CAS  Google Scholar 

  31. Brandstatter, J. H., Koulen, P. & Wässle, H. Diversity of glutamate receptors in the mammalian retina. Vision Res. 38, 1385–1397 (1998).

    Article  CAS  Google Scholar 

  32. Peichl, L. & Bolz, J. Kainic acid induces sprouting of retinal neurons. Science 223, 503–504 (1984).

    Article  CAS  Google Scholar 

  33. Lewis, G. P., Linberg, K. A. & Fisher, S. K. Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest. Ophthalmol. Vis. Sci. 39, 424–434 (1998).

    CAS  PubMed  Google Scholar 

  34. Cowan, W. M., Fawcett, J. W., O'Leary, D. D. & Stanfield, B. B. Regressive events in neurogenesis. Science 225, 1258–1265 (1984).

    Article  CAS  Google Scholar 

  35. Soucy, E., Wang, Y., Nirenberg, S., Nathans, J. & Meister, M. A novel signaling pathway from rod photoreceptor to ganglion cells in mammalian retina. Neuron 21, 481–493 (1998).

    Article  CAS  Google Scholar 

  36. Ying, S., Jansen, H. T., Lehman, M. N., Fong, S. L. & Kao, W. Y. Retinal degeneration in cone photoreceptor cell-ablated transgenic mice. Mol. Vis. 6, 101–108 (2000).

    CAS  PubMed  Google Scholar 

  37. Blanks, J. C., Adinolfi, A. M. & Lolley, R. N. Synaptogenesis in the photoreceptor terminal of the mouse retina. J. Comp. Neurol. 156, 81–94 (1974).

    Article  CAS  Google Scholar 

  38. Blanks, J. C., Adinolfi, A. M. & Lolley, R. N. Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. J. Comp. Neurol. 156, 95–106 (1974).

    Article  CAS  Google Scholar 

  39. Li, Z-Y., Kljavin, I. J. & Milam, A. H. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 15, 5429–5438 (1995).

    Article  CAS  Google Scholar 

  40. Fariss, R. N., Li, Z. Y. & Milam, A. H. Abnormalities in rod photoreceptors, amacrine cells and horizontal cells in human retinas with retinitis pigmentosa. Am. J. Ophthal. 129, 215–223 (2000).

    Article  CAS  Google Scholar 

  41. Allikmets, R. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 15, 236–246 (1997).

    Article  CAS  Google Scholar 

  42. Sun, H. & Nathans, J. Stargardt's ABCR is localized to the disc membrane of retinal rod outer segments. Nat. Genet. 17, 15–16 (1997).

    Article  Google Scholar 

  43. Weng, J. et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98, 13–23 (1999).

    Article  CAS  Google Scholar 

  44. Illing, M., Molday, L. L. & Molday, R. S. The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J. Biol. Chem. 272, 10303–10310 (1997).

    Article  CAS  Google Scholar 

  45. Sun, H., Molday, R. S. & Nathans, J. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J. Biol. Chem. 274, 8269–8281 (1999).

    Article  CAS  Google Scholar 

  46. Banin, E. et al. Retinal rod photoreceptor-specific gene mutation perturbs cone pathway development. Neuron 23, 549–557 (1999).

    Article  CAS  Google Scholar 

  47. Lam, B. L., Liu, M. & Hamasaki, D. I. Low-frequency damped electroretinographic wavelets in young asymptomatic patients with dominant retinitis pigmentosa. Ophthalmology 106, 1109–1113 (1999).

    Article  CAS  Google Scholar 

  48. Berson, E. L., Gouras, P., Gunkel, R. D. & Myrianthopoulos, N. C. Dominant retinitis pigmentosa with reduced penetrance. Arch. Opthalmol. 81, 226–234 (1969).

    Article  CAS  Google Scholar 

  49. Berson, E. L. & Simonoff, E. A. Dominant retinitis pigmentosa with reduced penetrance. Arch. Ophthalmol. 97, 1286–1291 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the North Carolina State University Swine Educational Unit for producing the pigs, Bruce Collins and Jeffrey Sommer for genotyping pigs, Ewa Worniallo for assistance with electron microscopy and Paul Hargrave of the University of Florida for the anti-rhodopsin mouse monoclonal antibody. This work was supported by the National Eye Institute (RO1EY11498 and P30EY05722), Foundation Fighting Blindness of Hunt Valley, Maryland and Research to Prevent Blindness of New York, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulton Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, YW., Hao, Y., Petters, R. et al. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci 3, 1121–1127 (2000). https://doi.org/10.1038/80639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing