Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computer simulation of cerebellar information processing

Abstract

Although many functions have been ascribed to the cerebellum, the uniformity of its synaptic organization suggests that a single, characteristic computation may be common to all. Computer simulations are useful in examining this cerebellar computation, as they inherently address function at the level of information processing. Progress is facilitated by factors that make the cerebellum particularly amenable to such analysis. We review progress from two contrasting approaches. Top-down simulations begin with hypotheses about computational mechanisms and then ask how such mechanisms might operate within the cerebellum. Bottom-up simulations attempt to build a representation of the cerebellum that reflects known cellular and synaptic components as accurately as possible. We describe recent advances from these two approaches that are leading to an understanding of what information the cerebellum processes and how its neurons and synapses accomplish this task.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-dependent properties of eyelid conditioning.
Figure 2: Top-down mechanisms for timing.
Figure 3: Factors contributing to response timing in the simulations.
Figure 4: Partial lesions of the cerebellar cortex.
Figure 5: Competition between acquisition and extinction contributes to the ISI effect in the simulations.

Similar content being viewed by others

References

  1. Llinas, R. & Welsh, J. P. On the cerebellum and motor learning . Curr. Opin. Neurobiol. 3, 958– 965 (1993).

    Article  CAS  Google Scholar 

  2. Courchesne, E. & Allen, G. Prediction and preparation, fundamental functions of the cerebellum. Learn. Mem. 4, 1–35 (1997).

    Article  CAS  Google Scholar 

  3. Bower, J. M. Control of sensory data acquisition. Int. Rev. Neurobiol. 41, 489–513 (1997).

    Article  CAS  Google Scholar 

  4. Bloedel, J. R. Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav. Brain Sci. 15, 666– 678 (1992).

    Article  Google Scholar 

  5. Thach, W. T., Goodkin, H. P. & Keating, J. G. The cerebellum and the adaptive coordination of movement . Annu. Rev. Neurosci. 15, 403– 442 (1992).

    Article  CAS  Google Scholar 

  6. Ivry, R. B. The representation of temporal information in perception and motor control . Curr. Opin. Neurobiol. 6, 851– 857 (1996).

    Article  CAS  Google Scholar 

  7. Schmahmann, J. D. International Review of Neurobiology. The Cerebellum and Cognition (Academic, San Diego, California, 1997).

    Google Scholar 

  8. Voogd, J. & Glickstein, M. The anatomy of the cerebellum . Trends Neurosci. 21, 370– 375 (1998).

    Article  CAS  Google Scholar 

  9. Eccles, J. C., Ito, M. & Szentágothai, J. The Cerebellum as a Neuronal Machine (Springer, Berlin, New York, 1967).

    Book  Google Scholar 

  10. Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984 ).

    Google Scholar 

  11. Llinas, R. in Handbook of Physiology Vol. II The Nervous System (ed. Brokks, V. B.) 831–976 (Am. Physiol. Soc., Bethesda, Maryland, 1981).

    Google Scholar 

  12. Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 ( 1996).

    Article  CAS  Google Scholar 

  13. Kim, J. J. & Thompson, R. F. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 20, 177–181 ( 1997).

    Article  CAS  Google Scholar 

  14. Mauk, M. D. Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18, 343–346 (1997).

    Article  CAS  Google Scholar 

  15. Sakurai, M. in The Olivocerebellar System in Motor Control (ed. Strata, P.) 221 –230 (Springer, New York, 1989).

    Book  Google Scholar 

  16. Hirano, T. Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119, 141–144 ( 1990).

    Article  CAS  Google Scholar 

  17. Racine, R. J., Wilson, D. A., Gingell, R. & Sunderland, D. Long-term potentiation in the interpositus and vestibular nuclei in the rat . Exp. Brain Res. 63, 158– 162 (1986).

    Article  CAS  Google Scholar 

  18. Schneiderman, N., Fuentes, I. & Gormezano, I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science 136, 650–652 (1962).

    Article  CAS  Google Scholar 

  19. Aitkin, L. M. & Boyd, J. Acoustic input to the lateral pontine nuclei. Hearing Res. 1, 67– 77 (1978).

    Article  CAS  Google Scholar 

  20. Steinmetz, J. E., Lavond, D. G. & Thompson, R. F. Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus. Bull. Psychonom. Soc. 28, 245–248 (1985).

    Article  Google Scholar 

  21. Steinmetz, J. E., Logan, C. G. & Thompson, R. F. in Cellular Mechanisms of Conditioning and Behavioral Plasticity (eds. Woody, D. L., Alkon, D. L. & McGaugh, J. L.) 143–148 (Plenum, New York, 1988).

    Book  Google Scholar 

  22. Lewis, J. L., LoTurco, J. J. & Solomon, P. R. Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the rabbit's classically conditioned nictitating membrane response. Behav. Neurosci. 101, 151–157 (1987).

    Article  CAS  Google Scholar 

  23. Sears, L. L. & Steinmetz, J. E. Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 545, 114– 122 (1991).

    Article  CAS  Google Scholar 

  24. Mauk, M. D., Steinmetz, J. E. & Thompson, R. F. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc. Natl. Acad. Sci. USA 83, 5349–5353 ( 1986).

    Article  CAS  Google Scholar 

  25. McCormick, D. A., Steinmetz, J. E. & Thompson, R. F. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res. 359, 120–130 (1985).

    Article  CAS  Google Scholar 

  26. McCormick, D. A., Clark, G. A., Lavond, D. G. & Thompson, R. F. Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79, 2731– 2735 (1982).

    Article  CAS  Google Scholar 

  27. McCormick, D. A. & Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223, 296–299 ( 1984).

    Article  CAS  Google Scholar 

  28. Schneiderman, N. & Gormezano, I. Conditioning of the nictitating membrane of the rabbit as a function of CS–US interval . J. Comp. Physiol. Psychol. 57, 188– 195 (1964).

    Article  CAS  Google Scholar 

  29. Smith, M. C., Coleman, S. R. & Gormezano, I. Classical conditioning of the rabbit's nictitating membrane response at backward, simultaneous, and forward CS–US intervals. J. Comp. Physiol. Psychol. 69, 226– 231 (1969).

    Article  CAS  Google Scholar 

  30. Mauk, M. D. & Ruiz, B. P. Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals . Behav. Neurosci. 106, 666– 681 (1992).

    Article  CAS  Google Scholar 

  31. Millenson, J. R., Kehoe, E. J. & Gormezano, I. Classical conditioning of the rabbit's nictitating membrane response under fixed and mixed CS–US intervals. Learn. Motiv. 8, 351–366 ( 1977).

    Article  Google Scholar 

  32. Moore, J. W. & Choi, J. S. Conditioned response timing and integration in the cerebellum. Learn. Mem. 4, 116–129 (1997).

    Article  CAS  Google Scholar 

  33. Hesslow, G. & Ivarsson, M. Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport 5, 649–652 (1994).

    Article  CAS  Google Scholar 

  34. Moore, J. W., Desmond, J. E. & Berthier, N. E. Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol. Cybern. 62, 17–28 (1989).

    Article  CAS  Google Scholar 

  35. Bullock, D., Fiala, J. C. & Grossberg, S. A neural model of timed response learning in the cerebellum . Neural Networks 7, 1101– 1114 (1994).

    Article  Google Scholar 

  36. Fiala, J. C., Grossberg, S. & Bullock, D. Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci. 16, 3760 –3774 (1996).

    Article  CAS  Google Scholar 

  37. Gluck, M. A., Reifsnider, E. S. & Thompson, R. F. in Neuroscience and Connectionist Theory (eds. Gluck, M. A. & Rumelhart, D. E.) 131–185 (Lawrence Erlbaum, Hillsdale, New Jersey, 1990).

    Google Scholar 

  38. Hull, C. L. Principles of Behavior, an Introduction to Behavior Theory (Appleton-Century-Crofts, New York, 1943).

    Google Scholar 

  39. Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M. & Mauk, M. D. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20, 5516–5525 ( 2000).

    Article  CAS  Google Scholar 

  40. Koch, C. & Segev, I. Single neurons and their role in information processing. Nat. Neurosci. 3, 1171– 1177 (2000).

    Article  CAS  Google Scholar 

  41. Buonomano, D. V. & Mauk, M. D. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses . Neural Comput. 6, 38– 55 (1994).

    Article  Google Scholar 

  42. Aizenman, C. D. & Linden, D. J. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiol. 82, 1697–1709 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by MH57051 and MH46904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Mauk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, J., Mauk, M. Computer simulation of cerebellar information processing. Nat Neurosci 3 (Suppl 11), 1205–1211 (2000). https://doi.org/10.1038/81486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing