Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23

Abstract

End-stage renal disease (ESRD) is a major public health problem, affecting 1 in 1,000 individuals and with an annual death rate of 20% despite dialysis treatment1,2. IgA nephropathy (IgAN) is the most common form of glomerulonephritis, a principal cause of ESRD worldwide1,2; it affects up to 1.3% of the population3,4,5,6 and its pathogenesis is unknown. Kidneys of people with IgAN show deposits of IgA-containing immune complexes with proliferation of the glomerular mesangium (Fig. 1). Typical clinical features include onset before age 40 with haematuria and proteinuria (blood and protein in the urine), and episodes of gross haematuria following mucosal infections are common; 30% of patients develop progressive renal failure6,7,8,9. Although not generally considered a hereditary disease, striking ethnic variation in prevalence1,2,3,4,5,6,10 and familial clustering11,12,13,14,15,16, along with subclinical renal abnormalities among relatives of IgAN cases9,14,15,16, have suggested a heretofore undefined genetic component. By genome-wide analysis of linkage in 30 multiplex IgAN kindreds, we demonstrate linkage of IgAN to 6q22–23 under a dominant model of transmission with incomplete penetrance, with a lod score of 5.6 and 60% of kindreds linked. These findings for the first time indicate the existence of a locus with large effect on development of IgAN and identify the chromosomal location of this disease gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathology of IgAN.
Figure 2: IgAN kindreds.
Figure 3: Linkage of IgAN to 6q22–23.

Similar content being viewed by others

References

  1. U.S. Renal Data System, USRDS 1999 Annual Data Report, National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda.

  2. Maisonneuve, P. et al. Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. Am. J. Kidney Dis. 35, 157–165 (2000).

    Article  CAS  Google Scholar 

  3. Varis, J. et al. Immunoglobulin and complement deposition in glomeruli of 756 subjects who had committed suicide or met with a violent death. J. Clin. Pathol. 46, 607–610 (1993).

    Article  CAS  Google Scholar 

  4. D'Amico, G. The commonest glomerulonephritis in the world: IgA nephropathy. Q. J. Med. 64, 709–727 ( 1987).

    CAS  Google Scholar 

  5. Julian, B.A., Waldo, F.B., Rifai, A. & Mestecky, J. IgA nephropathy, the most common glomerulonephritis worldwide. A neglected disease in the United States? Am. J. Med. 84, 129– 132 (1988).

    Article  CAS  Google Scholar 

  6. Schena, F.P. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am. J. Med. 89, 209– 215 (1990).

    Article  CAS  Google Scholar 

  7. Ibels, L.S. & Gyory, A.Z. IgA nephropathy: analysis of the natural history, important factors in the progression of renal disease, and a review of the literature. Medicine 73, 79–102 (1994).

    Article  CAS  Google Scholar 

  8. Julian, B.A., Tomana, M., Novak, J. & Mestecky, J. Progress in the pathogenesis of IgA nephropathy. Adv. Nephrol. Necker Hosp. 29, 53–72 ( 1999).

    CAS  Google Scholar 

  9. Schena, F.P. Immunogenetic aspects of primary IgA nephropathy. Kidney Int. 48, 1998–2013 (1995).

    Article  CAS  Google Scholar 

  10. Jennette, J.C, Wall, S.D. & Wilkman, A.S. Low incidence of IgA nephropathy in blacks . Kidney Int. 28, 944–950 (1985).

    Article  CAS  Google Scholar 

  11. Hoy, W.E., Hughson, M.D., Smith, S.M. & Megill, D.M. Mesangial proliferative glomerulonephritis in southwestern American Indians . Am. J. Kidney Dis. 21, 486– 496 (1993).

    Article  CAS  Google Scholar 

  12. Julian, B.A. et al. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N. Engl. J. Med. 312, 202– 208 (1985).

    Article  CAS  Google Scholar 

  13. Wyatt, R.J. et al. Regionalization in hereditary IgA nephropathy. Am. J. Hum. Genet. 41, 36–50 (1987).

    CAS  Google Scholar 

  14. Scolari, F. et al. Familial clustering of IgA nephropathy: further evidence in an Italian population. Am. J. Kidney Dis. 33, 857–865 (1999).

    Article  CAS  Google Scholar 

  15. Scolari, F. et al. Familial occurrence of primary glomerulonephritis: evidence for a role of genetic factors. Nephrol. Dial. Transplant. 7, 587–596 (1992).

    Article  CAS  Google Scholar 

  16. Schena, F.P., Scivittaro, V. & Ranieri, E. IgA nephropathy: pros and cons for a familial disease . Contrib. Nephrol. 104, 36– 45 (1993).

    Article  CAS  Google Scholar 

  17. Yano, N. et al. Polymorphism in the Iα1 germ-line transcript regulatory region and IgA productivity in patients with IgA nephropathy. J. Immunol. 160, 4936–4942 (1998).

    CAS  Google Scholar 

  18. Fennessy, M. et al. HLA-DQ gene polymorphism in primary IgA nephropathy in three European populations. Kidney Int. 49, 477 –480 (1996).

    Article  CAS  Google Scholar 

  19. Allen, A.C., Topham, P.S., Harper, S.J. & Feehally, J. Leukocyte beta 1,3 galactosyltransferase activity in IgA nephropathy. Nephrol. Dial. Transplant. 12, 701– 706 (1997).

    Article  CAS  Google Scholar 

  20. van Zandbergen, G. et al. Reduced binding of immunoglobulin A (IgA) from patients with primary IgA nephropathy to the myeloid IgA Fc-receptor, CD89. Nephrol. Dial. Transplant. 13, 3058– 3064 (1998).

    Article  CAS  Google Scholar 

  21. Zheng, F. et al. Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice. Nature Med. 5, 1018– 1025 (1999).

    Article  CAS  Google Scholar 

  22. Faraway, J.J. Distribution of the admixture test for the detection of linkage under heterogeneity . Genet. Epidemiol. 10, 75– 83 (1993).

    Article  CAS  Google Scholar 

  23. Lander, E.S. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results . Nature Genet. 11, 241– 247 (1995).

    Article  CAS  Google Scholar 

  24. Stephens, J.C., Briscoe, D. & O'Brien, S.J. Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am. J. Hum. Genet. 55, 809–824 ( 1994).

    CAS  Google Scholar 

  25. Craig, H.D. et al. Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15–13 and 3q25.2-27 . Hum. Mol. Genet. 7, 1851– 1858 (1998).

    Article  CAS  Google Scholar 

  26. Lathrop, G. M. & Lalouel, J.-M. Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 ( 1984).

    CAS  Google Scholar 

  27. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach . Am. J. Hum. Genet. 58, 1347– 1363 (1996).

    CAS  Google Scholar 

  28. Terwilliger, J.D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am. J. Hum. Genet. 56, 777–787 ( 1995).

    CAS  Google Scholar 

  29. Zhang, Z. et al. Human uteroglobin gene: structure, subchromosomal localization, and polymorphism. DNA Cell. Biol. 16, 73 –83 (1997).

    Article  CAS  Google Scholar 

  30. Simon, D.B. et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter . Nature Genet. 12, 24– 30 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the kindreds for participation; J. Budzinack for database assistance; M. Kashgarian for review of renal pathology; K. Choate for technical assistance; and N. Risch for helpful discussions. A.G.G. was supported by National Institutes of Health training grant and a gift by H. Printz. R.P.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Lifton.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharavi, A., Yan, Y., Scolari, F. et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nat Genet 26, 354–357 (2000). https://doi.org/10.1038/81677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing