Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a nucleosome core particle containing the variant histone H2A.Z

Abstract

Activation of transcription within chromatin has been correlated with the incorporation of the essential histone variant H2A.Z into nucleosomes. H2A.Z and other histone variants may establish structurally distinct chromosomal domains; however, the molecular mechanism by which they function is largely unknown. Here we report the 2.6 Å crystal structure of a nucleosome core particle containing the histone variant H2A.Z. The overall structure is similar to that of the previously reported 2.8 Å nucleosome structure containing major histone proteins. However, distinct localized changes result in the subtle destabilization of the interaction between the (H2A.Z–H2B) dimer and the (H3–H4)2 tetramer. Moreover, H2A.Z nucleosomes have an altered surface that includes a metal ion. This altered surface may lead to changes in higher order structure, and/or could result in the association of specific nuclear proteins with H2A.Z. Finally, incorporation of H2A.Z and H2A within the same nucleosome is unlikely, due to significant changes in the interface between the two H2A.Z–H2B dimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall comparison of H2A.Z-NCP and major-NCP.
Figure 2: The docking domain.
Figure 3: The electrostatic potentials of nucleosomal surfaces.
Figure 4: The L1 loop.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Iouzalen, N., Moreau, J. & Mechali, M. Nucleic Acids Res. 24, 3947– 3952 (1996).

    Article  CAS  Google Scholar 

  2. Stargell, L.A. et al. Genes Dev. 7, 2641– 2651 (1994).

    Article  Google Scholar 

  3. Clarkson, M.J., Wells, J.R., Gibson, F., Saint, R. & Tremethick, D.J. Nature 399, 694–697 (1999).

    Article  CAS  Google Scholar 

  4. Luger, K., Maeder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–259 (1997).

    Article  CAS  Google Scholar 

  5. Baxevanis, A.D., Arents, G., Moudrianakis, E.N. & Landsman, D. Nucleic Acids Res. 23, 2685– 2691 (1995).

    Article  CAS  Google Scholar 

  6. Harding, M. Acta Crystallogr. D D55, 1432–1443 (1999).

    Article  CAS  Google Scholar 

  7. Mackay, J.P. & Crossley, M. Trends Biochem. Sci. 23, 1–4 (1998 ).

    Article  CAS  Google Scholar 

  8. Luger, K. & Richmond, T.J. Curr. Opin. Genet. Dev. 8, 140–146 ( 1998).

    Article  CAS  Google Scholar 

  9. Costanzi, C. & Pehrson, J.R. Nature 393, 599–601 (1998).

    Article  CAS  Google Scholar 

  10. Pehrson, J.R. & Fuji, R.N. Nucleic Acids Res. 26, 2837–2842 (1998).

    Article  CAS  Google Scholar 

  11. Sullivan, K.F., Hechenberger, M. & Masri, K. J. Cell. Biol. 127, 581–592 (1994).

    Article  CAS  Google Scholar 

  12. Pehrson, J.R. & Fried, V.A. Science 257, 1398–1400 (1992).

    Article  CAS  Google Scholar 

  13. Thatcher, T.H. & Gorovsky, M.A. Nucleic Acids Res. 22, 174–179 ( 1994).

    Article  CAS  Google Scholar 

  14. Wolffe, A.P. Dev. Biol. 157, 224–231 (1993).

    Article  CAS  Google Scholar 

  15. Li, W., Nagaraja, S., Delcuve, G.P., Hendzel, M.J. & Davie, J.R. Biochem. J. 296, 737–744 (1993).

    Article  CAS  Google Scholar 

  16. van Daal, A. & Elgin, S.C. Mol. Biol. Cell 3, 593–602 (1992).

    Article  CAS  Google Scholar 

  17. Aasland, R., Gibson, T.J. & Stewart, A.F. Trends Biochem. Sci. 20, 56 –59 (1995).

    Article  CAS  Google Scholar 

  18. Wade, P.A., Jones, P.L., Vermaak, D. & Wolffe, A.P. Curr. Biol. 8, 843–846 ( 1998).

    Article  CAS  Google Scholar 

  19. Borrow, J. et al. Nature Genet. 14, 33– 41 (1996).

    Article  CAS  Google Scholar 

  20. Moosmann, P., Georgiev, O., Le Douarin, B., Bourquin, J.P. & Schaffner, W. Nucleic Acids Res. 24, 4859–4867 ( 1996).

    Article  CAS  Google Scholar 

  21. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Methods Enzymol. 304, 3– 19 (1999).

    Article  CAS  Google Scholar 

  22. Richmond, T.J., Searles, M.A. & Simpson, R.T. J. Mol. Biol. 199, 161–170 (1988).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode, 307– 326 (Academic Press, New York; 1997).

    Google Scholar 

  24. Brunger, A.T., Adams, P.D. & Rice, L.M. Structure 5, 325 –336 (1997).

    Article  CAS  Google Scholar 

  25. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. Acta Cryst. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  26. Gilson, M.K., Davis, M.E., Luty, B.A. & McCammon, J.A. J. Phys. Chem. 97, 3591–3600 ( 1993).

    Article  CAS  Google Scholar 

  27. Weiner, S.J. et al. J. Am. Chem. Soc. 106, 765– 784 (1984).

    Article  CAS  Google Scholar 

  28. Esnouf, R.M. J. Mol. Graph. Model 15, 132–143 (1997).

    Article  CAS  Google Scholar 

  29. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. J. Mol. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  30. Upson, C. et al. IEEE Comp. Graphics Appl. 9, 30– 42 (1989).

    Article  Google Scholar 

  31. Sanner, M.F., Olson, A.J. & Spehner, J.C. Biopolymers 38, 305– 320 (1996).

    Article  CAS  Google Scholar 

  32. Getzoff, E.D. et al. Nature 306, 287–290 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Earnest at the Advanced Light Source in Berkeley for support and cooperation; W. Schreurs, M. Schnizer and E. Schonbrunn (Colorado State University) for technical support; and V. Roberts (the Scripps Research Institute) for help with Fig. 3. This work was supported in part by a Searle Scholar Award to K.L., by the Cancer League of Colorado, by the Graduate School of Colorado State University, and by the Basil O'Conner Starter Scholar Award from the March of Dimes to K.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolin Luger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suto, R., Clarkson, M., Tremethick, D. et al. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Mol Biol 7, 1121–1124 (2000). https://doi.org/10.1038/81971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing