Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator AbrB

A Corrigendum to this article was published on 01 April 2005

Abstract

We have determined the high resolution NMR solution structure of the novel DNA binding domain of the Bacillus subtilis transition state regulator AbrB. Comparisons of the AbrB DNA binding domain with DNA binding proteins of known structure show that it is a member of a completely novel class of DNA recognition folds that employs a dimeric topology for cellular function. This new DNA binding conformation is referred to as the looped-hinge helix fold. Sequence homology investigations show that this DNA binding topology is found in other disparately related microbes. Structural analysis of the AbrB DNA binding domain together with bioanalytical and mutagenic data of full length AbrB allows us to construct a general model that describes the genetic regulation properties of AbrB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of the high resolution solution structure of the AbrB N-terminal DNA binding domain.
Figure 2: Ribbon diagrams of the mean AbrBN53 structure calculated from the 20 lowest energy structures.
Figure 3: Electrostatic surface potential, chemical shift mapping, and a model of AbrBN53 binding to DNA.
Figure 4
Figure 5: Subunit mixing experiment between equimolar amounts of AbrB and the AbrB R23S mutant.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Strauch, M.A. and Hoch, J.A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7, 337–342 (1993).

    Article  CAS  Google Scholar 

  2. Sonenshein, A.L., Losick R. & Hoch, J.A. Bacillus subtilis and other Gram-positive bacteria (American Society for Microbiology, Washington, D.C.; 1993).

    Book  Google Scholar 

  3. Strauch, M.A. Regulation of Bacillus subtilis gene expression during the transition from exponential growth to stationary phase. Prog. Nucl. Acids Res. Mol. Biol. 46, 121–153 (1993).

    Article  CAS  Google Scholar 

  4. Furbass R. & Marahiel, M.A. Mutant analysis of interaction of the Bacillus subtilis transcription regulator AbrB with the antibiotic biosynthesis gene tycA. FEBS Lett. 287,153–160 (1991).

    Article  CAS  Google Scholar 

  5. Xu, K., Clark D. & Strauch, M.A. Analysis of abrB mutations, mutant proteins, and why abrB does not utilize a perfect consensus in the −35 region of its σA promoter. J. Biol. Chem. 271, 2621–2626 ( 1996).

    Article  CAS  Google Scholar 

  6. Fisher, S.H., Strauch, M.A., Atkinson, M.R. & L.V. Wray, Jr. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. J. Bacteriol. 176,1903–1912 (1994).

    Article  CAS  Google Scholar 

  7. Furbass, R., Gocht, M., Zuber, P. & Maraheil, M.A. Interaction of AbrB, a transcriptional regulator from Bacillus subtilis with the promoters of the transition-state activated genes tycA and spoVG . Mol. Gen. Genet. 225, 347– 354 (1991).

    Article  CAS  Google Scholar 

  8. Slack, F.J., Mueller, J.P., Strauch, M.A., Mathiopoulos, C. & Sonenshein, A.L. Transcriptional regulation of Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5, 1915–1925 (1991).

    Article  CAS  Google Scholar 

  9. Strauch, M.A. et al. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8, 1615–1621 (1989).

    Article  CAS  Google Scholar 

  10. Xu, K. & Strauch, M.A. In vitro selection of optimal AbrB-binding sites: comparison to known in vivo sites indicates flexibility in AbrB binding and recognition of three dimensional DNA structures. Mol. Microbiol. 19, 145–158 (1996).

    Article  CAS  Google Scholar 

  11. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. & Skelton, N.J. Protein NMR spectroscopy: principles and practice (Academic Press, Inc., San Diego; 1995).

    Google Scholar 

  12. Skelton, N.J., Aspiras, F., Ogez, J. & Schall, T.J. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 34, 5329– 5342 (1995).

    Article  CAS  Google Scholar 

  13. Fairbrother, W.J., Reilly, D., Colby, T.J., Hesselgesser, J. & Horuk, R. The solution structure of melanoma growth stimulating activity. J. Mol. Biol. 242, 252–270 (1994).

    Article  CAS  Google Scholar 

  14. Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297 –309 (1993).

    Article  CAS  Google Scholar 

  15. Laskowski, R.A., Rullman, J.A.C., MacArthur, M.W., Kaptein, R., Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structure solved by NMR. J. Biol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  16. Brunger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR (Yale University Press, New Haven; 1993).

    Google Scholar 

  17. Sibanda, B.L., Blundell, T.L. & Thornton, J.M. Conformation of β-hairpins in protein structures. J. Mol. Biol. 206, 759– 777 (1989).

    Article  CAS  Google Scholar 

  18. Strauch, M.A. In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions. J. Bacteriol. 177, 4532–4536 (1995).

    Article  CAS  Google Scholar 

  19. Grzesiek, S. et al. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nature Struct. Biol. 3 , 340–345 (1996).

    Article  CAS  Google Scholar 

  20. Foster, M.P. et al. Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA. J. Biol. NMR 12, 51– 71 (1998).

    Article  CAS  Google Scholar 

  21. Madej, T., Gibrat, J-F. & Bryant, S.J. Threading a database of protein cores. Proteins 23, 356–359 ( 1995).

    Article  CAS  Google Scholar 

  22. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 223 , 123–138 (1993).

    Article  Google Scholar 

  23. Veenstra, T.D. et al. Metal mediated sterol receptor-DNA complex association and dissociation determined by electrospray ionization mass spectrometry. Nature Biotechnol. 16, 262–266 (1998).

    Article  CAS  Google Scholar 

  24. Loo, J. Studying noncovalent protein complexes by electrospray ionization massspectrometry . Mass Spec. Rev. 16, 1– 23 (1997).

    Article  CAS  Google Scholar 

  25. Strauch, M.A. et al. The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol. Microbiol. 3, 1203–1209 ( 1989)

    Article  CAS  Google Scholar 

  26. O'Reilly, M. & Devine, K.M. Expression of AbrB, a transition state regulator from Bacillus subtilis, is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli. J. Bacteriol. 179, 522–529 (1997).

    Article  CAS  Google Scholar 

  27. Bagyan, I., Hobot J. & Cutting, S. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 178, 4500–4507 (1996).

    Article  CAS  Google Scholar 

  28. Kobayashi, K. et al. Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J. Bacteriol. 177, 176–182 ( 1995).

    Article  CAS  Google Scholar 

  29. The Institute for Genomic Research. Preliminary sequence data acquisition http://www.tigr.org

  30. Huang, X. & Helmann, J.D. Identification of target promoters for the Bacillus subtilis σx factor using a consensus-directed search. J. Mol. Biol. 279, 165–173 (1998).

    Article  CAS  Google Scholar 

  31. Shaka, A.J., Lee, C.J. & Pines, A. Iterative schemes for bilinear operators: application to spin decoupling. J. Mag. Res. 77, 274 –293 (1988).

    Google Scholar 

  32. Englander, S.W. & Kallenbach, N.R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655 (1984).

    Article  Google Scholar 

  33. Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three-bond J (HN-Hα) coupling constants in 15N-enriched proteins . J. Am. Chem. Soc. 115, 7772– 7777 (1993).

    Article  CAS  Google Scholar 

  34. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins. J. Mag. Res. 95, 636–641 ( 1991).

    CAS  Google Scholar 

  35. Klein, W., Winkelmann, D., Hahn, M., Weber, T. & Marahiel, M.A. Molecular characterization of the transition state regulator AbrB from Bacillus stearothermophilus. Biochim. Biophys. Acta 1493, 82–90 (2000).

    Article  CAS  Google Scholar 

  36. Vaughn, J.L., Feher, V.A., Bracken, C. & Cavanagh, J. The DNA-binding domain in the Bacillus subtilis transition-state regulator AbrB employs significant motion for promiscuous DNA recognition. J. Mol. Biol. in the press.

Download references

Acknowledgements

We thank D. Schaak, J. Osterhout, and R. Cunningham for helpful discussions. We are also indebted to K. Xu for providing purified wild type AbrB protein for the initial phases of this study. N. Skelton generously provided analytical scripts and insightful discussion. This work was supported by grants to J.C. from NIH and the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cavanagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughn, J., Feher, V., Naylor, S. et al. Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator AbrB. Nat Struct Mol Biol 7, 1139–1146 (2000). https://doi.org/10.1038/81999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing