Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation

Abstract

Caveolin-1, the primary coat protein of caveolae, has been implicated as a regulator of signal transduction through binding of its “scaffolding domain” to key signaling molecules. However, the physiological importance of caveolin-1 in regulating signaling has been difficult to distinguish from its traditional functions in caveolae assembly, transcytosis, and cholesterol transport. To directly address the importance of the caveolin scaffolding domain in vivo, we generated a chimeric peptide with a cellular internalization sequence fused to the caveolin-1 scaffolding domain (amino acids 82–101). The chimeric peptide was efficiently taken up into blood vessels and endothelial cells, resulting in selective inhibition of acetylcholine (Ach)-induced vasodilation and nitric oxide (NO) production, respectively. More importantly, systemic administration of the peptide to mice suppressed acute inflammation and vascular leak to the same extent as a glucocorticoid or an endothelial nitric oxide synthase (eNOS) inhibitor. These data imply that the caveolin-1 scaffolding domain can selectively regulate signal transduction to eNOS in endothelial cells and that small-molecule mimicry of this domain may provide a new therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caveolin scaffolding domain peptide inhibits acetylcholine (Ach) -induced relaxation and potentiates phenylephrine (PE)-induced contraction of the isolated mouse aorta.
Figure 2: Evidence that eNOS is a primary biological target of the caveolin scaffolding domain peptide in intact blood vessels.
Figure 3: Biotinylated AP–caveolin peptide inhibits vascular relaxation and localizes to the endothelium and adventitia of mouse aorta.
Figure 4: Cellular uptake and inhibition of NO release by the AP–caveolin scaffolding domain peptide in cultured endothelial cells and eNOS-transfected cells.
Figure 5: AP–caveolin peptide inhibits edema formation and vascular leakage.

Similar content being viewed by others

References

  1. Smart, E.J. et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19, 7289–7304 (1999).

    Article  CAS  Google Scholar 

  2. Kurzchalia, T.V. & Parton, R.G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431 (1999).

    Article  CAS  Google Scholar 

  3. Li, S., Couet, J. & Lisanti, M.P. Src tyrosine kinases, G alpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271, 29182–29190 (1996).

    Article  CAS  Google Scholar 

  4. Razani, B., Rubin, C.S. & Lisanti, M.P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J. Biol. Chem. 274, 26353–26360 (1999).

    Article  CAS  Google Scholar 

  5. Nasu, Y. et al. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells [see comments]. Nature Med. 4, 1062–1064 (1998).

    Article  CAS  Google Scholar 

  6. Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440 (1997).

    Article  CAS  Google Scholar 

  7. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol. 1, 98–105 (1999).

    Article  CAS  Google Scholar 

  8. Sternberg, P.W. & Schmid, S.L. Caveolin, cholesterol and Ras signalling. Nature Cell Biol. 1, E35–37 (1999).

    Article  CAS  Google Scholar 

  9. Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  Google Scholar 

  10. Murohara, T. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567–2578 (1998).

    Article  CAS  Google Scholar 

  11. Rudic, R.D. et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest. 101, 731–736 (1998).

    Article  CAS  Google Scholar 

  12. Lee, P.C. et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am. J. Physiol. 277, H1600–1608 (1999).

    CAS  Google Scholar 

  13. Garcia-Cardena, G., Oh, P., Liu, J., Schnitzer, J.E. & Sessa, W.C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc. Natl. Acad. Sci. USA 93, 6448–6453 (1996).

    Article  CAS  Google Scholar 

  14. Liu, J., Hughes, T.E. & Sessa, W.C. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J. Cell Biol. 137, 1525–1535 (1997).

    Article  CAS  Google Scholar 

  15. Ju, H., Zou, R., Venema, V.J. & Venema, R.C. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J. Biol. Chem. 272, 18522–18525 (1997).

    Article  CAS  Google Scholar 

  16. Michel, J.B., Feron, O., Sase, K., Prabhakar, P. & Michel, T. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J. Biol. Chem. 272, 25907–25912 (1997).

    Article  CAS  Google Scholar 

  17. Ghosh, S. et al. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J. Biol. Chem. 273, 22267–22271 (1998).

    Article  CAS  Google Scholar 

  18. Derossi, D., Chassaing, G. & Prochiantz, A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8, 84–87 (1998).

    Article  CAS  Google Scholar 

  19. Derossi, D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193 (1996).

    Article  CAS  Google Scholar 

  20. Derossi, D., Joliot, A.H., Chassaing, G. & Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).

    CAS  Google Scholar 

  21. Smith, W. Molecular biology of prostanoid biosynthetic enzymes and receptors. Adv. Exp. Med. Biol. [AU: volume?] 989–1011 (1997).

  22. Pollock, J.S. et al. Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am. J. Physiol. 265, C1379–1387 (1993).

    Article  CAS  Google Scholar 

  23. Okamoto, T., Schlegel, A., Scherer, P.E. & Lisanti, M.P. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–5422 (1998).

    Article  CAS  Google Scholar 

  24. Salvemini, D. et al. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br. J. Pharmacol. 118, 829–838 (1996).

    Article  CAS  Google Scholar 

  25. Ialenti, A., Ianaro, A., Moncada, S. & Di Rosa, M. Modulation of acute inflammation by endogenous nitric oxide. Eur. J. Pharmacol. 211, 177–182 (1992).

    Article  CAS  Google Scholar 

  26. He, P., Zeng, M. & Curry, F.E. Effect of nitric oxide synthase inhibitors on basal microvessel permeability and endothelial cell [Ca2+]i. Am. J. Physiol. 273, H747–755 (1997).

    Article  CAS  Google Scholar 

  27. Hobbs, A.J., Higgs, A. & Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191–220 (1999).

    Article  CAS  Google Scholar 

  28. Murohara, T. et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97, 99–107 (1998).

    Article  CAS  Google Scholar 

  29. Garcia-Cardena, G. et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821–824 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J.K. Crawford and I. Laroche from the W.M. Keck biotechnology resource center at Yale University School of Medicine. This work is supported by grants from the National Institute of Health (HL57665, HL 61371 and HL 64793 to W.C.S., a grant-in-aid from the American Heart Association (National Grant to W.C.S.). W.C.S. is an established investigator of the American Heart Association. J-P.G. is supported in part by fellowships from the Heart and Stroke Foundation of Canada, Fonds pour la Formation de Chercheurs etl' Aida a la Recherche (FCAR), and from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Sessa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucci, M., Gratton, JP., Rudic, R. et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6, 1362–1367 (2000). https://doi.org/10.1038/82176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing