Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer predisposition caused by elevated mitotic recombination in Bloom mice

Abstract

Bloom syndrome is a disorder associated with genomic instability that causes affected people to be prone to cancer. Bloom cell lines show increased sister chromatid exchange, yet are proficient in the repair of various DNA lesions. The underlying cause of this disease are mutations in a gene encoding a RECQ DNA helicase. Using embryonic stem cell technology, we have generated viable Bloom mice that are prone to a wide variety of cancers. Cell lines from these mice show elevations in the rates of mitotic recombination. We demonstrate that the increased rate of loss of heterozygosity (LOH) resulting from mitotic recombination in vivo constitutes the underlying mechanism causing tumour susceptibility in these mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting at the mouse Blm locus.
Figure 2: Characterization of the Blmm2 and Blmm3 mutant alleles.
Figure 3: The effect of Blm deficiency on SCE.
Figure 4: Tumours in Blmm3/m3 mice.
Figure 5: The effect of Blm deficiency on gene targeting.
Figure 6: The effect of Blm deficiency on LOH in ES cells.
Figure 7: The effect of Blm deficiency on tumour susceptibility in ApcMin mice.

Similar content being viewed by others

References

  1. German, J. Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine 72, 393–406 (1993).

    Article  CAS  Google Scholar 

  2. Chakraverty, R.K. & Hickson, I.D. Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays 21, 286–294 (1999).

    Article  CAS  Google Scholar 

  3. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  Google Scholar 

  4. Kowalczykowski, S.C. & Eggleston, A.K. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63, 991–1043 (1994).

    Article  CAS  Google Scholar 

  5. Harmon, F.G. & Kowalczykowski, S.C. RecQ helicase, in concert with RecA and SSB protein, initiates and disrupts DNA recombination. Genes Dev. 12, 1134–1144 (1998).

    Article  CAS  Google Scholar 

  6. Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398 (1994).

    Article  CAS  Google Scholar 

  7. Watt, P.M., Hickson, I.D., Borts, R.H. & Louis, E.J. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stewart, E., Chapman, C.R., Al-Khodairy, F., Carr, A.M. & Enoch, T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16, 2682–2692 (1997).

    Article  CAS  Google Scholar 

  9. Davey, S. et al. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol. Cell. Biol. 18, 2721–2728 (1998).

    Article  CAS  Google Scholar 

  10. Puranam, K.L. & Blackshear, P.J. Cloning and characterization of RECQL, a potential human homologue of the Escherichia coli DNA helicase RecQ. J. Biol. Chem. 269, 29838–29845 (1994).

    CAS  Google Scholar 

  11. Seki, M. et al. Molecular cloning of cDNA encoding human DNA helicase Q1 which has homology to Escherichia coli RecQ helicase and localization of the gene at chromosome 12p12. Nucleic Acids Res. 22, 4566–4573 (1994).

    Article  CAS  Google Scholar 

  12. Yu, C.-E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  CAS  Google Scholar 

  13. Kitao, S. et al. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54, 443–452 (1998).

    Article  CAS  Google Scholar 

  14. Epstein, C.J., Martin, G.M., Schultz, A.L. & Motulsky, A.G. Werner's syndrome: a review of its symptomatology, natural history, pathologic features, genetics, and relationship to the natural aging process. Medicine 45, 177–221 (1966).

    Article  CAS  Google Scholar 

  15. Kitao, S. et al. Mutation in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 22, 82–84 (1999).

    Article  CAS  Google Scholar 

  16. Abuin, A. & Bradley, A. Recycling selectable markers in mouse embryonic stem cells. Mol. Cell. Biol. 16, 1851–1856 (1996).

    Article  CAS  Google Scholar 

  17. Olson, E.N., Arnold, H.H., Rigby, P.W. & Wold, P.J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4 (1996).

    Article  CAS  Google Scholar 

  18. Meyers, E.N., Lewandoski, M. & Martin, G.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136–141 (1998).

    Article  CAS  Google Scholar 

  19. Colledge, W.H. et al. Generation and characterization of a δ F508 cystic fibrosis mouse model. Nature Genet. 10, 445–452 (1995).

    Article  CAS  Google Scholar 

  20. Van der Hoeven, F., Zakany, J. & Duboule, D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 85, 1025–1035 (1996).

    Article  CAS  Google Scholar 

  21. Gharibyan, V. & Youssoufian, H. Localization of the Bloom's syndrome helicase to punctate nuclear structures and the nuclear matrix and regulation during the cell cycle: comparison with the Werner's syndrome helicase. Mol. Carcinog. 26, 261–273 (1999).

    Article  CAS  Google Scholar 

  22. Jones, S.N. et al. The tumorigenetic potential and cell growth characteristics of p53-deficient cells are equivalent in the presence or absence of Mdm2. Proc. Natl Acad. Sci. USA 93, 14106–14111 (1996).

    Article  CAS  Google Scholar 

  23. Dong, J. et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535 (1996).

    Article  CAS  Google Scholar 

  24. Luo, G. et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl Acad. Sci. USA 96, 7376–7381(1999).

    Article  CAS  Google Scholar 

  25. Sonoda, E. et al. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol. Cell. Biol. 19, 5166–5169 (1999).

    Article  CAS  Google Scholar 

  26. Luria, S.E. & Delbruck, M. Mutation of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–510 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bilger, A., Shoemaker, A.R., Gould, K.A. & Dove, W.F. Manipulation of the mouse germline in the study of Min-induced neoplasia. Semin. Cancer Biol. 7, 249–260 (1996).

    Article  CAS  Google Scholar 

  28. Luongo, C., Moser, A.R., Gledhill, S. & Dove, W.F. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 54, 5947–5952 (1994).

    CAS  PubMed  Google Scholar 

  29. Dietrich, W.F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  Google Scholar 

  30. Chester, N., Kuo, F., Kozak, C., O'Hara, C.D. & Leder, P. Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 12, 3382–3393 (1998).

    Article  CAS  Google Scholar 

  31. Ramirez-Solis, R., Davis, A. & Bradley, A. Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–878 (1993).

    Article  CAS  Google Scholar 

  32. Hasty, P., Rivera-Perez, J., Chang, C. & Bradley, A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell. Biol. 11, 4509–4517 (1991).

    Article  CAS  Google Scholar 

  33. Jacoby, R.F. et al. Chemoprevention of spontaneous intestinal adenomas in the Apc Min mouse model by the nonsteroidal anti-inflammatory drug piroxicam. Cancer Res. 56, 710–714 (1996).

    CAS  PubMed  Google Scholar 

  34. German, J. & Alhadeff, B. Sister chromatic exchange (SCE) analysis. in Current Protocols in Human Genetics (eds Dracopoli, N.C. et al.) 8.6.1–8.6.10 (John Wiley & Sons, New York, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank P. Biggs for comments on the manuscript. A.B. acknowledges support from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Bradley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, G., Santoro, I., McDaniel, L. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet 26, 424–429 (2000). https://doi.org/10.1038/82548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing