Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation

Abstract

Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 Å resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Second step of Moco biosynthesis and sequence conservation of MPT synthase.
Figure 2: Mass spectrometric analysis of a, inactive and b, partially active MPT synthase, and c, MPT synthase in which 50% of molecules have formed an intersubunit covalent complex.
Figure 3: Structure of MPT synthase.
Figure 4: Active site of MPT synthase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rajagopalan, K.V. Adv. Enzymol. 64, 215–290 (1991).

    CAS  PubMed  Google Scholar 

  2. Rajagopalan, K.V. & Johnson, J.L. J. Biol. Chem. 267, 10199–10202 (1992).

    CAS  PubMed  Google Scholar 

  3. Kisker, C., Schindelin, H. & Rees, D.C. Annu. Rev. Biochem. 66, 233–267 (1997).

    Article  CAS  Google Scholar 

  4. Rajagopalan, K.V. Biochem. Soc. Trans. 25, 757–761 (1997).

    Article  CAS  Google Scholar 

  5. Rajagopalan, K.V. In Escherichia coli and Salmonella typhimurium — molecular and cellular biology, Vol. 1 (ed. Neidhardt, F.C.) 674–679 (ASM Press, Washington DC; 1996).

    Google Scholar 

  6. Reiss, J. Christensen, E., Kurlemann, G., Zabot, M.-T. & Dorche, C. Hum. Genet. 103, 639–644 (1998).

    Article  CAS  Google Scholar 

  7. Reiss, J. et al. Nature Genet. 20, 51–53 (1998).

    Article  CAS  Google Scholar 

  8. Reiss, J. et al. Am. J. Hum. Genet. 64, 706–711 (1999).

    Article  CAS  Google Scholar 

  9. Wuebbens, M.M. & Rajagopalan, K.V. J. Biol. Chem. 270, 1082–1087 (1995).

    Article  CAS  Google Scholar 

  10. Rieder, C. et al. Eur. J. Biochem. 255, 24–36 (1998).

    Article  CAS  Google Scholar 

  11. Pitterle, D.M. & Rajagopalan, K.V. J. Biol. Chem. 268, 13499–13505 (1993).

    CAS  PubMed  Google Scholar 

  12. Pitterle, D.M., Johnson, J.L. & Rajagopalan, K.V. J. Biol. Chem. 268, 13506–13509 (1993).

    CAS  PubMed  Google Scholar 

  13. Joshi, M.S., Johnson, J.L. & Rajagopalan, K.V. J. Bacteriol. 178, 4310–4312 (1996).

    Article  CAS  Google Scholar 

  14. Hasona, A., Ray, R.M. & Shanmugam, K.T. J. Bacteriol. 180, 1466–1472 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Holm, L. & Sander, C. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  16. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  17. Begley, T.P., Xi, J., Kinsland, C., Taylor, S. & McLafferty, F. Curr. Opin. Chem. Biol. 3, 623–629 (1999).

    Article  CAS  Google Scholar 

  18. Palenchar, P.M., Buck, C.J., Cheng, H., Larson, T.J. & Mueller, E.G. J. Biol. Chem. 275, 8283–8286 (2000).

    Article  CAS  Google Scholar 

  19. Wang, C., Xi, J., Begley, T.P. & Nicholson, L.K. Nature Struct. Biol. 8, 47–51 (2000).

    CAS  Google Scholar 

  20. Rivers, S.L., McNairn, E., Blasco, F., Giordano, G. & Boxer, D.H. Mol. Microbiol. 8, 1071–1081 (1993).

    Article  CAS  Google Scholar 

  21. Nohno, T., Kasai, Y. & Saito, T. J. Bacteriol. 170, 4097–4102 (1988).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  23. Bailey, S. Acta Crystallogr.D 50, 760–763 (1994).

    Article  Google Scholar 

  24. DeLaFortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  25. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  26. Perrakis, A., Morris, R. & Lamzin, V.S. Nature. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Murshudov, G., Vagin, A. & Dodson, E. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  29. Hutchinson, E.G. & Thornton, J.M. Protein Sci. 3, 2207–2216 (1994).

    Article  CAS  Google Scholar 

  30. Barton, G.J. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  31. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 276, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

Supported by National Institutes of Health Grants to H.S. and K.V.R. M.W. would like to thank H. Sage and R. Stevens (Duke University) for performing sedimentation equilibrium centrifugation and mass spectrometry experiments. The National Synchrotron Light Source at Brookhaven is supported by the United States Department of Energy and National Institutes of Health, and beamline X26C is supported in part by the State University of New York at Stony Brook and its Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Schindelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, M., Wuebbens, M., Rajagopalan, K. et al. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Mol Biol 8, 42–46 (2001). https://doi.org/10.1038/83034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing