Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On guard—activating NK cell receptors

Abstract

Although natural killer (NK) cells are known to preferentially kill cells that lack major histocompatibility complex class I antigens, we do not know what signals the attack of these targets. Several membrane receptors have recently been implicated in this process and include molecules with immunoreceptor tyrosine-based activation motifs (ITAM) and motifs that bind phosphoinositide-3 kinase (PI3K). Evidence is emerging that NK cells may use a combination of several receptors and signaling pathways to protect the host against infection and possibly against malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative NK cell receptor complexes containing ITAM-bearing transmembrane adaptors.
Figure 2: The NKG2D-DAP10 receptor complex and its ligands.

Similar content being viewed by others

References

  1. Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Long, E. O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Algarra, I., Cabrera, T. & Garrido, F. The HLA crossroad in tumor immunology. Human Immunol. 61, 65–73 (2000).

    Article  CAS  Google Scholar 

  5. Lanier, L. L., Corliss, B. & Phillips, J. H. Arousal and inhibition of human NK cells. Immunol. Rev. 155, 145–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Isakov, N. Role of immunoreceptor tyrosine-based activation motif in signal transduction from antigen and Fc receptors. Adv. Immunol. 69, 183–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Lanier, L. L., Yu, G. & Phillips, J. H. Analysis of FcgRIII (CD16) membrane expression and association with CD3ζ and FceRI-γ by site-directed mutation. J. Immunol. 146, 1571–1576 (1991).

    CAS  PubMed  Google Scholar 

  9. Wu, J., Cherwinski, H., Spies, T., Phillips, J. H. & Lanier, L. L. DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J. Exp. Med. 192, 1059–1068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lanier, L. L., Yu, G. & Phillips, J. H. Co-association of CD3ζ with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342, 803–805 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Kurosaki, T. & Ravetch, J. V. A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of FcγRIII. Nature 342, 805–807 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Perussia, B. Signaling for cytotoxicity. Nature Immunol. 1, 372–374 (2000).

    Article  CAS  Google Scholar 

  13. Perussia, B. et al. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J. Immunol. 130, 2142–2148 (1983).

    CAS  PubMed  Google Scholar 

  14. Lanier, L. L., Le, A. M., Phillips, J. H., Warner, N. L. & Babcock, G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J. Immunol. 131, 1789–1796 (1983).

    CAS  PubMed  Google Scholar 

  15. Anegon, I., Cuturi, M. C., Trinchieri, G. & Perussia, B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptors (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Exp. Med. 167, 452–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Azzoni, L., Anegon, I., Calabretta, B. & Perussia, B. Ligand binding to FcgR induces c-myc-dependent apoptosis in IL-2-stimulated NK cells. J. Immunol. 154, 491–499 (1995).

    CAS  PubMed  Google Scholar 

  17. Ortaldo, J. R., Mason, A. T. & O'Shea, J. J. Receptor-induced death in human natural killer cells: Involvement of CD16. J. Exp. Med. 181, 339–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J. V. FcR γ chain deletion results in pleiotropic effector cell defects. Cell 76, 519–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Arase, N. et al. Association with FcRγ is essential for activation signal through NKR-P1 (CD161) in natural killer (NK) cells and NK1.1+ T cells. J. Exp. Med. 186, 1957–1963 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pende, D. et al. Identification and molecular characterization of NKP30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomasello, E. et al. Association of signal-regulatory proteins beta with KARAP/DAP-12. Eur. J. Immunol. 30, 2147–2156 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Colucci, F. et al. Redundant role of the Syk protein tyrosine kinase in mouse NK cell differentiation. J. Immunol. 163, 1769–1774 (1999).

    CAS  PubMed  Google Scholar 

  25. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Olcese, L. et al. Human killer cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by natural killer cells. J. Immunol. 158, 5083–5086 (1997).

    CAS  PubMed  Google Scholar 

  27. Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, K. M., Wu, J., Bakker, A. B. H., Phillips, J. H. & Lanier, L. L. Ly49D and Ly49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).

    CAS  PubMed  Google Scholar 

  29. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bakker, A. B., Baker, E., Sutherland, G. R., Phillips, J. H. & Lanier, L. L. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl Acad. Sci. USA 96, 9792–9796 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dietrich, J., Cella, M., Seiffert, M., Buhring, H. J. & Colonna, M. Cutting edge: signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164, 9–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can Be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. McVicar, D. W. et al. DAP12-mediated signal transduction in natural killer cells. A dominant role for the syk protein-tyrosine kinase. J. Biol. Chem. 273, 32934–32942 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B, and C. Nature 391, 795–798 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Vance, R. E., Jamieson, A. M. & Raulet, D. H. Recognition of the Class Ib molecule Qa-1b by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J. Exp. Med. 190, 1801–1812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. George, T. C., Ortaldo, J. R., Lemieux, S., Kumar, V. & Bennett, M. Tolerance and Alloreactivity of the Ly49D Subset of Murine NK Cells. J. Immunol. 163, 1859–1867 (1999).

    CAS  PubMed  Google Scholar 

  37. Idris, A. H. et al. The natural killer gene complex genetic locus Chok encodes Ly-49D, it target recognition receptor that activates natural killing. Proc. Natl Acad. Sci. USA 96, 6330–6335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura, M. C. et al. Natural killing of xenogeneic cells mediated by the mouse Ly-49D receptor. J. Immunol. 163, 4694–700 (1999).

    CAS  PubMed  Google Scholar 

  39. Winter, C. C., Gumperz, J. E., Parham, P., Long, E. O. & Wagtmann, N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J. Immunol. 161, 571–577 (1998).

    CAS  PubMed  Google Scholar 

  40. Valés-Gómez, M., Reyburn, H. T., Erskine, R. A., Lopez-Botet, M. & Strominger, J. L. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J. 18, 4250–4260 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tomasello, E. et al. Combined Natural Killer Cell and Dendritic Cell Functional Deficiency in KARAP/DAP12 Loss-of-Function Mutant Mice. Immunity 13, 355–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bakker, A.B.H. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13, 345–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nature Genet. 25, 357–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nature Immunol. 1, 419–425 (2000).

    Article  CAS  Google Scholar 

  45. Wu, J. et al. An activating receptor complex on natural killer and T cells formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Houchins, J. P., Yabe, T., McSherry, C. & Bach, F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J. Exp. Med. 173, 1017–1020 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1996).

    Google Scholar 

  48. Chang, C. et al. Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J. Immunol. 163, 4651–4654 (1999).

    CAS  PubMed  Google Scholar 

  49. Bauer, S. et al. Activation of natural killer cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Berg, S. F., Dissen, E., Westgaard, I. H. & Fossum, S. Molecular characterization of rat NKR-P2, a lectin-like receptor expressed by NK cells and resting T cells. Int. Immunol. 10, 379–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Ho, E. L. et al. Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc. Natl Acad. Sci. USA 95, 6320–6325 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bahram, S., Bresnahan, M., Geraghty, D. E. & Spies, T. A second lineage of mammalian major histocompatibility complex class I genes. Proc. Natl Acad. Sci. USA 91, 6259–6263 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, P. et al. Crystal structure of the MHC class I homolog MIC–A, a γδT cell ligand. Immunity 10, 577–584 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nomura, M. et al. Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J. Biochem. 120, 987–995 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Nomura, M., Takihara, Y. & Shimada, K. Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: one of the early inducible clones encodes a novel protein sharing several highly homologous regions with a Drosophila polyhomeotic protein. Differentiation 57, 39–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Malarkannan, S. et al. The molecular and functional characterization of a dominant minor H antigen, H60. J. Immunol. 161, 3501–3509 (1998).

    CAS  PubMed  Google Scholar 

  59. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  61. Chalupny, J. et al. Soluble forms of the novel MHC class I-related molecules, ULBP1 and ULBP2, bind to and functionally activate NK cells. FASEB J. 14, 1018 (2000).

    Google Scholar 

  62. Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Chambers, C.A. & Allison, J.P. Costimulatory regulation of T cell function. Curr. Opin. Cell. Biol. 11, 203–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Prasad, K.V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr (P)-Met-Xaa-Met motif. Proc. Natl Acad. Sci. USA 91, 2834–2838 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Truitt, K. E., Hicks, C. M. & Imboden, J. B. Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells. J. Exp. Med. 179, 1071–1076 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Pages, F. et al. Binding of phosphatidyl-inositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 3327–3329 (1994).

    Article  Google Scholar 

  67. Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Truitt, K. E. et al. CD28 delivers costimulatory signals independently of its association with phosphatidylinositol 3-kinase. J. Immunol. 155, 4702–4710 (1995).

    CAS  PubMed  Google Scholar 

  69. Ni, H.-T., Deeths, M. J. & Mescher, M. F. Phosphatidylinositol 3 kinase activity is not essential for B7-1-mediated costimulation of proliferation or development of cytotoxicity in murine T cells. J. Immunol. 157, 2243–2246 (1996).

    CAS  PubMed  Google Scholar 

  70. Cai, Y.-C. et al. Selective CD28 pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Immunity 3, 417–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Nandi, D., Gross, J.A. & Allison, J.P. CD28-mediated costimulation is necessary for optimal proliferation of murine NK cells. J. Immunol. 152, 3361–3369 (1994).

    CAS  PubMed  Google Scholar 

  72. Heldhof, A.B. et al. Expression of B7–1 by highly metastatic mouse T lymphomas induces optimal natural killer cell-mediated cytotoxicity. Cancer Res. 55, 2730–2733 (1995).

    Google Scholar 

  73. Chambers, B. J., Salcedo, M. & Ljunggren, H.-G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Hunter, C. A. et al. The role of the CD28/B7 interaction in regulation of NK cell responses during infection with Toxoplasma gondii. J. Immunol. 158, 2285–2293 (1997).

    CAS  PubMed  Google Scholar 

  75. Azuma, M., Cayabyab, M., Buck, D., Phillips, J. H. & Lanier, L. L. Involvement of CD28 in major histocompatibility complex-unrestricted cytotoxicity mediated by a human NK leukemia cell line. J. Immunol. 149, 1115–1123 (1992).

    CAS  PubMed  Google Scholar 

  76. Lanier, L. L. et al. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154, 97–105 (1995).

    CAS  PubMed  Google Scholar 

  77. Galea-Lauri, J. et al. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J. Immunol. 163, 62–70 (1999).

    CAS  PubMed  Google Scholar 

  78. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M. & Kumar, K. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151, 60–70 (1993).

    CAS  PubMed  Google Scholar 

  79. Mathew, P. A. et al. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells. J. Immunol. 151, 5328–5337 (1993).

    CAS  PubMed  Google Scholar 

  80. Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell 4, 555–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Cocks, B. G. et al. A novel receptor involved in T-cell activation. Nature 376, 260–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Nichols, K. E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 95, 13765–13770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seemayer, T. A. et al. X-linked lymphoproliferative disease: Twenty-five years after the discovery. Pediatr. Res. 38, 471–478 (1999).

    Article  Google Scholar 

  85. Brown, M. H. et al. 2B4, the Natural Killer and T Cell Immunoglobulin Superfamily Surface Protein, Is a Ligand for CD48. J. Exp. Med. 188, 2083–2090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Latchman, Y., McKay, P. F. & Reiser, H. Identification of the 2B4 molecule as a counter-receptor for CD48. J. Immunol. 161, 5809–5812 (1998).

    CAS  PubMed  Google Scholar 

  87. Yokoyama, S. et al. Expression of the BLAST-1 activation/adhesion molecule and its identification as CD48. J. Immunol. 146, 2192–2200 (1991).

    CAS  PubMed  Google Scholar 

  88. Klaman, L. D. & Thorley-Lawson, D. A. Characterization of the CD48 gene demonstrates a positive element that is specific to Epstein-Barr virus-immortalized B-cell lines and contains an essential NF-κB site. J. Virol. 69, 871–881 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Valiante, N. M. & Trinchieri, G. Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes. J. Exp. Med. 178, 1397–1406 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Tangye, S. G., Phillips, J. H., Lanier, L. L. & Nichols, K. E. Cutting edge: functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 165, 2932–2936 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Sivori, S. et al. 2B4 functions as a co-receptor in human NK cell activation. Eur. J. Immunol. 30, 787–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Nakajima, H., Cella, M., Langen, H., Friedlein, A. & Colonna, M. Activating interactions in human NK cell recognition: the role of 2B4-CD48. Eur. J. Immunol. 29, 1676–1683 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Tangye, S. G. et al. Human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J. Immunol. 162, 6981–6985 (1999).

    CAS  PubMed  Google Scholar 

  94. Watzl, C., Stebbins, C. C. & Long, E. O. NK cell inhibitory receptors prevent tyrosine phosphorylation of the activation receptor 2B4 (CD244). J. Immunol. 165, 3545–3548 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Kubin, M. Z. et al. Molecular cloning and biological characterization of NK cell activation- inducing ligand, a counterstructure for CD48. Eur. J. Immunol. 29, 3466–3477 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Parolini, S. et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 192, 337–346 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Benoit, L., Wang, X., Pabst, H. F., Dutz, J. & Tan, R. Defective NK cell activation in X-linked lymphoproliferative disease. J. Immunol. 165, 3549–3553 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Nakajima, H. et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur. J. Immunol. 30, 3309–3318 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Gonzalez-Cabrero, J. et al. CD48-deficient mice have a pronounced defect in CD4+ T cell activation. Proc. Natl Acad. Sci. USA 96, 1019–1023 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schuhmachers, G. et al. Activation of murine epidermal γδT cells through surface 2B4. Eur. J. Immunol. 25, 1117–1120 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dedicated to the memory of my friend and mentor G. Haughton. Funded in part by the Sandler Family Supporting Fund. Thanks to J. Katheiser for expert assistance with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis L. Lanier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanier, L. On guard—activating NK cell receptors. Nat Immunol 2, 23–27 (2001). https://doi.org/10.1038/83130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/83130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing