Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics

Abstract

Considered by some to be among the simpler forms of life, viruses represent highly evolved natural vectors for the transfer of foreign genetic information into cells. This attribute has led to extensive attempts to engineer recombinant viral vectors for the delivery of therapeutic genes into diseased tissues. While substantial progress has been made, and some clinical successes are over the horizon, further vector refinement and/or development is required before gene therapy will become standard care for any individual disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generic strategy for engineering a virus into a vector.
Figure 2: Transduction of the target cell.

Similar content being viewed by others

References

  1. Aghi, M., Hochberg, F. & Breakfield, X.O. Prodrug activation enzymes in cancer gene therapy. J. Gene Med. 2, 148–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Cao, L. et al. Cytokine gene transfer in cancer therapy. Stem Cells supplement 16, 1251–1260 (1998).

    Google Scholar 

  3. Feldman, A.L. & Libuti, S.K. Progress in antiangiogenic gene therapy of cancer. Cancer 89, 1181–1194 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Roth, J.A. & Cristiano, R.J. Gene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 89 21–39 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hermiston, T. Gene delivery from replication-selective viruses:arming guided missiles in the war aganist cancer. J. Clin. Invest. 105, 1169–1172 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heise, C. & Kirn, D.H. Replication-selective adenoviruses as oncolytic agents. J. Clin. Invest. 105, 847–851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clackson, T. Regulated gene expression systems. Gene Ther. 7, 120–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Coffin, J., Hughes, S.H., Varmus, H.E., & Miller, A.D. eds., Retroviruses. (Cold Spring Harbor Laboratory Press, Plainview 2000).

    Google Scholar 

  9. Rosenberg, S.A. et al. Human gene marker/therapy clinical protocols. Hum. Gene Ther. 11, 919–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, A.D. in Retroviruses . (eds. Coffin, J., Hughes, S.H. & Varmus, H.E.) (Cold Spring Harbor Laboratory Press, Planview, 2000).

    Google Scholar 

  11. Otto, E. et al. Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum. Gene Ther. 5, 567–575 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Chong, H., Starkey, W. & Vile, R.G. A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs and endogenous retroviral sequences. J. Virol. 72, 2663–2670 (1994).

    Google Scholar 

  13. Cornetta, K. et al. No retroviremia or pathology in long-term follow-up of monkeys exposed to a murine amphotropic retrovirus. Hum. Gene Ther. 2, 215–219 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Vanin, E.F., Kaloss, M., Broscius, C. & Nienhuis, A.W. Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J. Virol. 68, 4241–4250 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Burns, J.C., Friedmann, T., Driever, W., Burrascano, M. & Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cell. Proc. Natl. Acad. Sci USA 90, 8033–8037 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roe, T., Reynolds, T.C., Yu, G. & Brown, P.O. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller, D.G., Adam, M.A. & Miller, A.D. Gene Transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Halene, S. & Kohn, D.B. Gene therapy using hematopoietic stem cells: sisyphus approaches the crest. Hum. Gene Ther. 11, 1259–1267 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Cavazzana-Calvo, M., Hacein-Bey, S. & de Saint, B. Gene Therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Vigna, E. & Naldini, L. Excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 5, 308–316 (2000).

    Article  Google Scholar 

  22. Bukrinsky, M.I. & Haffar, O.K. HIV-1 nuclear import: in search of a leader. Front. Biosci. 4, 772–781 (1999).

    Google Scholar 

  23. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F.H. & Verma, I.M. Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bukovsky, A.A., Song, J.P. & Naldini, L. Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J. Virol. 73, 7087–7092 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Olsen, J.C. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 5, 1481–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Poeschla, E.M., Wong-Staal, F. & Looney, D.J. Efficient transdcution of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Med. 4, 354–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Mitrophanous, K. et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6, 1808–1818 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kordower, J.H. et al. Lentiviral gene transfer to the nonhuman primate brain. Exp. Neurol. 160, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, M., Miyoshi, H., Verma, I.M. & Gage, F.H. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J. Virol. 73, 7812–7816 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bosch, A., Perret, E., Desmaris, N., Trono, D. & Heard, J.M. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther. 11, 1139–1150 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kordower, J.H. et al. Parkinson's Disease: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's Disease. Science 290, 767–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Consiglio et al. Correction of neuropathology and protection against learning impairments in affected mice. Nature Med. in press.

  37. Johnson, L.G., Olsen, J.C., Naldini, L. & Boucher, R.C. Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo. Hum. Gene Ther. 7, 568–574 (2000).

    Article  CAS  Google Scholar 

  38. Park, F., Ohashi, K., Chiu, W., Naldini, L. & Kay, M.A. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nature Genet. 24, 49–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Park, F. Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood 96, 1173–1175 (2000).

    CAS  PubMed  Google Scholar 

  40. Kafri, T., Blomer, U., Peterson, D.A., Gage, F.H. & Verma, I. Sustained expression of genes delivered directly into the liver and muscle by lentiviral vectors. Nature Genet. 17, 314–317 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Miyoshi, H., Smith, K.A., Mosier, D.E., Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. An, D.S. et al. Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34(+) cells. J. Virol. 74, 1286–1295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guenechea, G., Gan, O.I. & Inamitsu, T. Transduction of human CD34+ CD38 bone marrow and cord blood-derived SCID-repopulation cells with third-generation lentiviral vectors. Mol. Ther. 1, 566–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. May, C. et al. Therapeutic haemoglodin synthesis in β-thalassaemic mice expressing lentivirus-encoded human betaglobin. Nature 406, 82–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Trobridge, G.D. & Russell, D.W. Helper-free foamy virus vectors. Hum. Gene Ther. 9, 2517–2525 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Benihoud, K., Yeh, P. & Perricaudet, M. Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10, 440–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Brody, S.L. & Crystal, R.G. Adenovirus-mediated in vivo gene transfer. Ann. N.Y. Acad. Sci. 716, 90–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Kovesdi, I., Brough, D.E., Bruder, J.T. & Wickham, T.J. Adenoviral vectors for gene transfer. Curr. Opin. Biotechnol. 8, 583–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Hitt, M.M., Addison, C.L. & Graham, F.L. Human adenovirus vectors for gene transfer into mammalian cells. Adv. Pharmacol. 40, 137–206 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Horwitz, M.S. Adenoviruses. in Fields Virology (eds. Fields, B., Knipe, D.M., Howley, P.M. & Chancock, R.M.) 2149–2171 (Lippincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  51. Loser, P., Hillgenberg, M., Arnold, W., Both, G.W. & Hofmann, C. Ovine adenovirus vectors mediate efficient gene transfer to skeletal muscle. Gene Ther. 7, 1491–1498 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Morral, N. et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl. Acad. Sci. USA 96, 12816–12821 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parks, R., Evelegh, C. & Graham, F. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther. 6, 1565–1573 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Curiel, D.T. Strategies to adapt adenoviral vectors for targeted delivery. Ann. N.Y. Acad. Sci. 886, 158–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Wickham, T.J. Targeting adenovirus. Gene Ther. 7, 110–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Shenk, T. Adenovirade: The viruses and their replication. in Fields Virology (eds. Fields, B., Knipe, D.M., Howley, P.M. & Chancock, R.M.) 2111–2149 (Lipincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  57. Wold, W.S. & Gooding, L.R. Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184, 1–8 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Ilan, Y. et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc. Natl. Acad. Sci. USA 94, 2587–2592 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barr, D. et al. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther. 2, 151–155 (1995).

    CAS  PubMed  Google Scholar 

  60. Schowalter, D.B., Himeda, C.L., Winther, B.L., Wilson, C.B. & Kay, M.A. Implication of interfering antibody formation and apoptosis as two different mechanisms leading to variable duration of adenovirus-mediated transgene expression in immune-comptent mice. J. Virol. 73, 4755–4766 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kay, M.A. et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nature Genet. 11, 191–197 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, Y., Li, Q., Ertl, H.C. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2115 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, Y. & Wilson, J.M. Clearance of adenovirus-infected hepatocytes by class-I restricted CD4+ CTLs in vivo. J. Immunol. 155, 2564–2570 (1995).

    CAS  PubMed  Google Scholar 

  64. Lusky, M. et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J. Virol. 72, 2022–2032 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Armentano, D. et al. E4ORF3 requirement for achieving long-term transgene expression from the cytomegalovirus promoter in adenovirus vectors. J Virol. 73, 7031–7034 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gorziglia, M.I. et al. Generation of an adenovirus vector lacking E1,e2a, E3, and all of E4 except open reading frame 3. J. Virol. 73, 6048–6055 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Christ, M. et al. Modulation of the inflammatory properties and hepatoxicity of recombinant adenovirus vectors by the viral E4 gene products. Hum. Gene Ther. 11, 415–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. O'Neal, W.K. et al. Toxicology comparison of E2a-deleted and first-generation adenoviral vectors expressing α1-antitrypsin after systemic delivery. Human Gene Ther. 9, 1587–1598 (1998).

    Article  CAS  Google Scholar 

  69. Morsy, M.A. & Caskey, C.T. Expanded-capcity adenoviral vectors—the helper-dependent vectors. Mol. Med. Today 5, 18–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Balague, C. et al. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 95, 820–828 (2000).

    CAS  PubMed  Google Scholar 

  71. Morral, N. et al. High doses of a helper dependent adenoviral vector yield supraphysiologica levels of alpha 1-antitrypsin with negligible toxicity. Hum. Gene Ther. 9, 2709–2716 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Vrancken Peeters, M.J., Lieber, A., Perkins, J. & Kay, M.A. Method for multiple portal vein infusions in mice:quantitation of adenovirus-mediated hepatic gene transfer. Biotechniques 20, 278–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Bramson, J.L., Graham, F.L. & Gauldie, J. The use of adenoviral vectors for gene therapy and gene transfer in vivo. Curr. Opin. Biotechnol. 6, 590–595 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Alton, E. & Kitson, C. Gene therapy for cystic fibrosis. Expert Opin. Investig. Drugs 9, 1523–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Rosengart, T.K. et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Muzyczka, N. Use of adeno-associated virus as a general tranduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129 (1992).

    CAS  PubMed  Google Scholar 

  77. Russell, D.W. & Kay, M.A. Adeno-associated virus vectors and hematology. Blood 94, 864–874 (1999).

    CAS  PubMed  Google Scholar 

  78. Monahan, P.E. & Samulski, R.J. Adeno-associated Virus Vectors for Gene Therapy: More Pros than Cons? Mol. Med. Today 11, 433–440 (2000).

    Article  Google Scholar 

  79. Tal, J. Adeno-associated virus-based vectors in gene therapy. J. Biomed. Sci. 7, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Matsushita, T. et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hauswirth, W.W., Lewin, A.S., Zolutukhin, S. & Muzyczka, N. Production and purification of recombinant adeno-associated virus. Methods Enzymol. 316, 743–761 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Clark, K.R., Liu, X., McGrath, J.P. & Johnson, P.R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum. Gene Ther. 10, 1031–1039 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics reponsible for long-term episomal persistence in muscle tissue. J. Virol. 73, 8568–8577 (1999).

    Google Scholar 

  85. Nakai, H., Iwaki, Y., Kay, M.A. & Couto, L.B. Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J. Virol. 73, 5438–5447 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Miao, C.H. et al. The kinetics of rAAV integration in the liver. Nature Genet. 19, 13–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Vincent-Lacaze, N. et al. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J. Virol. 73, 1949–1955 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakai, H., Storm, T.A. & Kay, M.A. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J. Virol. 74 9451-9463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Duan, D., Yan, Z., Yue, Y. & Engelhardt, J.F. Structural analysis of adeno-associated virius transduction circular intermediates. Virol. 26, 8–14 (1999).

    Article  Google Scholar 

  90. Yang, J. et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73, 9468–9477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferrari, F.K., Samulski, T., Shenk, T. & Samulski, R.J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fisher, K.J. et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J. Virol. 70, 520–532 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yan, Z., Zhang, Y., Duan, D. & Engelhardt, J.F. From the cover: trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl. Acad. Sci. USA 97, 6716–6721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun, L., Li, J. & Xiao, X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nature Med. 6, 599–602 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Nakai, H., Storm, T. & Kay, M. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nature Biotechnol. 18, 527–532 (2000).

    Article  CAS  Google Scholar 

  96. Monahan, P.E. & Samulski, R.J. AAV vectors: is clinical success on the horizon? Gene Ther. 7, 24–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Miao, C.H. et al. Nonrandom transduction of recombinant adeno-associated viral vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J. Virol. 74, 3793–3803 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stedman, H., Wilson, J.M., Finke, R., Kleckner, A.L. & Mendell, J. Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: α-, β-, γ-, or Δ-sarcoglycan gene delivered with intramuscular instillations of adeno-associated vectors. Hum. Gene Ther. 11, 777–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Wagner, J.A. et al. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus. Laryngoscope 109, 266–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Kay, M.A. et al. Evidence for gene transfer and expression of blood coagulation factor IX in patients with severe hemophilia B treated with an AAV vector. Nature Genet. 24, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Krisky, D.M. et al. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 5, 1517–1530 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Samaniego, L.A., Neiderhiser, L. & DeLuca, N.A. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72, 3307–3320 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wolfe, D. et al. Systemic delivery of nerve growth factor following herpesvirus gene transfer. Mol. Ther. in press.

  104. Spaete, R. & Frenkel, N. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning amplifying vector. Cell 30, 295–304 (1982).

    Article  CAS  PubMed  Google Scholar 

  105. Saeki, Y. et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther. 9, 2787–2794 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Burton, E.A. & Glorioso, J.C. Herpes simplex virus vector-based gene therapy for malignant glioma. Gene Ther. Mol. Biol. 5, 1–17 (2000).

    Google Scholar 

  107. Goss, J., Goins, W., Lacomis, D., Glorioso, J. & Fink, D. Effect of a modified herpes simplex virus expressing nerve growth factor on taxol-induced neuropathy in mice. Ann. Meet. Soc. Neurosci. Absts. 29, 2280 (1999).

    Google Scholar 

  108. Chancellor, M. et al. Nerve growth factor (NGF) gene therapy improves rat diabetic cystopathy, but does not increase pain sensation. Mol. Ther. 1, S111 (2000).

  109. Yenari, M. et al. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 44, 584–591 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Yamada, M. et al. HSV vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine induced degeneration of neurons in the substantia nigra in vivo. Proc. Natl. Acad. Sci. USA 96, 4078–4083 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Martino, G., Poliani, P.L., Marconi, P.C., Comi, G. & Furlan, R. Cytokine gene therapy of autoimmune demyelination revisited using herpes simplex virus type-1-derived vectors. Gene Ther. 7, 1087–1093 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Zhu, J., Kang, W., Wolfe, J. & Fraser, N. Significantly increased expression of β-glucuronidase in the central nervous system of mucopolysaccharidosis type VII mice from the latency-associated transcript promoter in a nonpathogenic herpes simplex virus type 1 vector. Mol. Ther. 2, 82–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Goss, J., Goins, W., Glorioso, J. & Fink, D. Antinociceptive effect of gene transfer with HSV vector coding for human preproenkephalin. Mol. Ther. 1, S110 (2000).

  114. Goins, W.F. et al. Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglia neurons from peroxide toxicity. J. Virol. 73, 519–532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lieber, A., Steinwaerder, D.S., Carlson, C.A. & Kay, M.A. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J. Virol. 73, 9314–9324 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Recchia, A. et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 96, 2615–2620 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dutheil, N., Shi, F., Dupressoir, T. & Linden, R.M. Adeno-associated virus site-specifically integrates into a muscle-specific DNA region. Proc. Natl. Acad. Sci. USA 97, 4862–4866 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Linden, R.M., Ward, P., Giraud, C., Winocour, E. & Berns, K.I. Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 93, 11288–11294 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, C., Baum, B.J., Iadarola, M.J. & O'Connell, B.C. Genomic integration and gene expression by a modified adenoviral vector. Nature Biotechnol. 18, 176–186 (2000).

    Article  CAS  Google Scholar 

  120. Groth, A.C., Olivares, E.C., Thyagarajan, B. & Calos, M.P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97, 5995–6000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thyagarajan, B., Guimaraes, M.J., Groth, A.C. & Calos, M.P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Strayer, D.S. Gene therapy using SV-40 derived vectors: what does the future hold. J. Cell. Physiol. 181, 375–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Hewson, R. RNA viruses: emerging vectors for vaccination and gene therapy. Mol. Med. Today 6, 28–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Wahlfors, J.J., Zullo, S.A., Loimas, S., Nelson, D.M. & Morgan, R.A. Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther. 7, 472–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Chaisomchit, S., Tyrrell, D.L. & Chang, L.J. Development of replicative and nonreplicative hepatitis B virus vectors. Gene Ther. 4, 1330–1340 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Palese, P., Zheng, H., Engelhardt, O.G., Pleschka, S. & Garcia-Sastre, A. Negative -strand RNA viruses: genetic engineering and applications. Proc. Natl. Acad. Sci. USA 93, 11354–11358 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sclimenti, C.R. & Calos, M.P. Epstein-Barr virus vectors for gene expression and transfer. Curr. Opin. Biotechnol. 9, 476–479 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.A.K was supported by NIH grants DK49022 and HL64274. J.C.G was supported by NIH grants AR44526, GM34534,DK44935, and NS38850. LN was supported by grants from Telethon, the European Community and the Italian Ministry for University and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, M., Glorioso, J. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7, 33–40 (2001). https://doi.org/10.1038/83324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/83324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing