Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional regulation and function during the human cell cycle

Abstract

We report here the transcriptional profiling of the cell cycle on a genome-wide scale in human fibroblasts. We identified approximately 700 genes that display transcriptional fluctuation with a periodicity consistent with that of the cell cycle. Systematic analysis of these genes revealed functional organization within groups of coregulated transcripts. A diverse set of cytoskeletal reorganization genes exhibit cell-cycle–dependent regulation, indicating that biological pathways are redirected for the execution of cell division. Many genes involved in cell motility and remodeling of the extracellular matrix are expressed predominantly in M phase, indicating a mechanism for balancing proliferative and invasive cellular behavior. Transcripts upregulated during S phase displayed extensive overlap with genes induced by DNA damage; cell-cycle–regulated transcripts may therefore constitute coherent programs used in response to external stimuli. Our data also provide clues to biological function for hundreds of previously uncharacterized human genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering analysis of cell-cycle–regulated transcripts.
Figure 2: Over- and under-representation of genes in biological functional categories in cell-cycle–regulated expression clusters, as calculated by the binomial distribution function.
Figure 3: Cell-cycle regulation of human genes with related biological function.

Similar content being viewed by others

References

  1. Nicklas, R.B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    Article  CAS  Google Scholar 

  2. Nasmyth, K. Viewpoint: putting the cell cycle in order. Science 274, 1643–1645 (1996).

    Article  CAS  Google Scholar 

  3. Stillman, B. Cell cycle control of DNA replication. Science 274, 1659–1664 (1996).

    Article  CAS  Google Scholar 

  4. Sanchez, I. & Dynlacht, B.D. Transcriptional control of the cell cycle. Curr. Opin. Cell Biol. 8, 318–324 (1996).

    Article  CAS  Google Scholar 

  5. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  6. Friend, S.H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  Google Scholar 

  7. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  8. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  9. Rao, P.N. & Johnson, R.T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225, 159–164 (1970).

    Article  CAS  Google Scholar 

  10. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  11. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998); erratum: 282, 1421 (1998).

    Article  CAS  Google Scholar 

  12. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  13. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. & Church, G.M. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  14. Chan, G.K., Schaar, B.T. & Yen, T.J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J. Cell Biol. 143, 49–63 (1998).

    Article  CAS  Google Scholar 

  15. Schaar, B.T., Chan, G.K., Maddox, P., Salmon, E.D. & Yen, T.J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373–1382 (1997).

    Article  CAS  Google Scholar 

  16. Liu, K. et al. Reversible tumorigenesis induced by deficiency of vasodilator-stimulated phosphoprotein. Mol. Cell. Biol. 19, 3696–3703 (1999).

    Article  CAS  Google Scholar 

  17. Kosaki, R., Watanabe, K. & Yamaguchi, Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 59, 1141–1145 (1999).

    CAS  PubMed  Google Scholar 

  18. Entwistle, J., Hall, C.L. & Turley, E.A. HA receptors: regulators of signalling to the cytoskeleton. J. Cell. Biochem. 61, 569–577 (1996).

    Article  CAS  Google Scholar 

  19. Nguyen, D.H., Hussaini, I.M. & Gonias, S.L. Binding of urokinase-type plasminogen activator to its receptor in MCF-7 cells activates extracellular signal-regulated kinase 1 and 2 which is required for increased cellular motility. J. Biol. Chem. 273, 8502–8507 (1998).

    Article  CAS  Google Scholar 

  20. Feng, H. et al. CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nature Cell Biol. 1, 486–492 (1999).

    Article  CAS  Google Scholar 

  21. Wang, X.W. et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 96, 3706–3711 (1999).

    Article  CAS  Google Scholar 

  22. Harkin, D.P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999).

    Article  CAS  Google Scholar 

  23. Moorman, J.P., Bobak, D.A. & Hahn, C.S. Inactivation of the small GTP binding protein Rho induces multinucleate cell formation and apoptosis in murine T lymphoma EL4. J. Immunol. 156, 4146–4153 (1996).

    CAS  PubMed  Google Scholar 

  24. O'Connell, C.B., Wheatley, S.P., Ahmed, S. & Wang, Y.L. The small GTP-binding protein rho regulates cortical activities in cultured cells during division. J. Cell Biol. 144, 305–313 (1999).

    Article  CAS  Google Scholar 

  25. Madaule, P. et al. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394, 491–494 (1998).

    Article  CAS  Google Scholar 

  26. Guasch, R.M., Scambler, P., Jones, G.E. & Ridley, A.J. RhoE regulates actin cytoskeleton organization and cell migration. Mol. Cell. Biol. 18, 4761–4771 (1998).

    Article  CAS  Google Scholar 

  27. Vallenius, T., Luukko, K. & Makela, T.P. CLP-36 PDZ-LIM protein associates with nonmuscle α-actinin-1 and α-actinin-4. J. Biol. Chem. 275, 11100–11105 (2000).

    Article  CAS  Google Scholar 

  28. Sato, N., Funayama, N., Nagafuchi, A., Yonemura, S. & Tsukita, S. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J. Cell Sci. 103, 131–143 (1992).

    CAS  PubMed  Google Scholar 

  29. Radhakrishna, H., Al-Awar, O., Khachikian, Z. & Donaldson, J.G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855–866 (1999).

    CAS  Google Scholar 

  30. Kondo, A. et al. A new paxillin-binding protein, PAG3/Papα/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Mol. Biol. Cell 11, 1315–1327 (2000).

    Article  CAS  Google Scholar 

  31. Law, S.F., O'Neill, G.M., Fashena, S.J., Einarson, M.B. & Golemis, E.A. The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol. Cell. Biol. 20, 5184–5195 (2000).

    Article  CAS  Google Scholar 

  32. Leeuwen, F.N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).

    Article  CAS  Google Scholar 

  33. Arai, M. & Kwiatkowski, D.J. Differential developmentally regulated expression of gelsolin family members in the mouse. Dev. Dyn. 215, 297–307 (1999).

    Article  CAS  Google Scholar 

  34. North, A.J. et al. Molecular map of the desmosomal plaque. J. Cell Sci. 112, 4325–4336 (1999).

    CAS  PubMed  Google Scholar 

  35. Assmann, V., Jenkinson, D., Marshall, J.F. & Hart, I.R. The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J. Cell Sci. 112, 3943–3954 (1999).

    CAS  PubMed  Google Scholar 

  36. Bachmann, C., Fischer, L., Walter, U. & Reinhard, M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J. Biol. Chem. 274, 23549–23557 (1999).

    Article  CAS  Google Scholar 

  37. Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamamoto, K., Ichijo, H. & Korsmeyer, S.J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell. Biol. 19, 8469–8478 (1999).

    Article  CAS  Google Scholar 

  39. Phillips, A.C., Ernst, M.K., Bates, S., Rice, N.R. & Vousden, K.H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771–781 (1999).

    Article  CAS  Google Scholar 

  40. Hakem, A., Sasaki, T., Kozieradzki, I. & Penninger, J.M. The cyclin-dependent kinase Cdk2 regulates thymocyte apoptosis. J. Exp. Med. 189, 957–968 (1999).

    Article  CAS  Google Scholar 

  41. Gil-Gomez, G., Berns, A. & Brady, H.J. A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J. 17, 7209–7218 (1998).

    Article  CAS  Google Scholar 

  42. Lind, E.F. et al. Bcl-2-induced changes in E2F regulatory complexes reveal the potential for integrated cell cycle and cell death functions. J. Immunol. 162, 5374–5379 (1999).

    CAS  PubMed  Google Scholar 

  43. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  Google Scholar 

  44. McNally, F.J. & Thomas, S. Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol. Biol. Cell 9, 1847–1861 (1998).

    Article  CAS  Google Scholar 

  45. Hartman, J.J. et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287 (1998).

    Article  CAS  Google Scholar 

  46. Farrance, I.K. & Ordahl, C.P. The role of transcription enhancer factor-1 (TEF-1) related proteins in the formation of M-CAT binding complexes in muscle and non-muscle tissues. J. Biol. Chem. 271, 8266–8274 (1996).

    Article  CAS  Google Scholar 

  47. Stewart, A.F., Suzow, J., Kubota, T., Ueyama, T. & Chen, H.H. Transcription factor RTEF-1 mediates α1-adrenergic reactivation of the fetal gene program in cardiac myocytes. Circ. Res. 83, 43–49 (1998).

    Article  CAS  Google Scholar 

  48. Lee, S.B. et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98, 663–673 (1999).

    Article  CAS  Google Scholar 

  49. White, K.P., Rifkin, S.A., Hurban, P. & Hogness, D.S. Microarray analysis of Drosophila development during metamorphosis. Science 286, 2179–2184 (1999).

    Article  CAS  Google Scholar 

  50. Martin, L.G., Demers, G.W. & Galloway, D.A. Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. J. Virol. 72, 975–985 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Galloway for providing the cell line; L. Wodicka for help with experiments; M. Ho for help with data analysis; M. Mittmann and D. Balaban for array design; Affymetrix Product Development for array testing and validation; F.F. Cai for help in construction of the human functional database; and M. Mindrinos, S. Chang, C. Chon, J. Yang and N. Thayer for discussions and a critical reading of the manuscript. This work was supported in part by NIH grants to S.J.E. and R.W.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, R., Huang, M., Campbell, M. et al. Transcriptional regulation and function during the human cell cycle. Nat Genet 27, 48–54 (2001). https://doi.org/10.1038/83751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing