Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of rat biliverdin reductase

Abstract

Biliverdin reductase (BVR) is a soluble cytoplasmic enzyme that catalyzes the conversion of biliverdin to bilirubin using NADH or NADPH as electron donor. Bilirubin is a significant biological antioxidant, but it is also neurotoxic and the cause of kernicterus. In this study, we have determined the crystal structure of rat BVR at 1.4 Å resolution. The structure contains two domains: an N-terminal domain characteristic of a dinucleotide binding fold (Rossmann fold) and a C-terminal domain that is predominantly an antiparallel six-stranded β-sheet. Based on this structure, we propose modes of binding for NAD(P)H and biliverdin, and a possible mechanism for the enzyme.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heme degradation pathway in mammals.
Figure 2: Structure and amino acid sequence of rat BVR.
Figure 3: The proposed BVR cofactor and substrate binding site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bosma, P.J. et al. J. Biol. Chem. 269, 17960–17964 (1994).

    CAS  PubMed  Google Scholar 

  2. Tenhunen, R., Marver, H.S. & Schmid, R. J. Biol. Chem. 244, 6388–6394 (1969).

    CAS  Google Scholar 

  3. Noguchi, M., Yoshida, T. & Kikuchi, G. J. Biochem. (Tokyo) 86, 833–848 (1979).

    Article  CAS  Google Scholar 

  4. Kutty, R.K. & Maines, M.D. J. Biol. Chem. 256, 3956–3962 (1981).

    CAS  PubMed  Google Scholar 

  5. Yamaguchi, T., Komoda, Y. & Nakajimam, H. J. Biol. Chem. 269, 24343–24348 (1994).

    CAS  PubMed  Google Scholar 

  6. Schluchter, W.M. & Glazer, A.N. J. Biol. Chem. 272, 13562–13569 (1997).

    Article  CAS  Google Scholar 

  7. McDonagh, A.F., Palma, L.A. & Schmid R. Biochem J. 194, 273–282 (1981).

    Article  CAS  Google Scholar 

  8. Gopinathan, V., Miller, N.J., Milner, A.D. & Rice-Evans, C.A. FEBS Lett. 349, 197–200 (1994).

    Article  CAS  Google Scholar 

  9. Farrera, J.A. et al. Bioorg. Med. Chem. B, 181–185 (1994).

  10. Dore, S. et al. Proc. Natl. Acad. Sci. USA 96, 2445–2450 (1999).

    Article  CAS  Google Scholar 

  11. Chuniaud, L. et al. Clin. Chim. Acta 256, 103–114 (1996).

    Article  CAS  Google Scholar 

  12. Bell, J.E. & Maines, M.D. Arch. Biochem. Biophys. 263, 1–9 (1988).

    Article  CAS  Google Scholar 

  13. McCoubrey W.K. & Maines M.D. Eur. J. Biochem. 222, 597–603 (1994).

    Article  CAS  Google Scholar 

  14. Maines, M.D., Polevoda, B.V., Huang, T.J. & McCoubrey Jr. Eur. J. Biochem. 235, 372–381 (1996).

    Article  CAS  Google Scholar 

  15. Sun, D. et al. Acta Crystallogr. D 56, 1180–1182 (2000).

    Article  CAS  Google Scholar 

  16. Abad-Zapatero. C., Griffith. J., Sussman, J.L. & Rossmann, M.G. J. Mol. Biol. 198, 445–467 (1987).

    Article  CAS  Google Scholar 

  17. Bellamacina, C.R. FASEB J. 10, 1257–1269 (1996).

    Article  CAS  Google Scholar 

  18. Kingston, R.L., Scopes. R.K. & Baker, E.N. Structure 4, 1413–1428 (1996).

    Article  CAS  Google Scholar 

  19. Rowland, P., Basak, A.K., Gover, S., Levy, H.R. & Adams, M.J. Structure 2, 1073–1087 (1994).

    Article  CAS  Google Scholar 

  20. Scapin, G., Reddy, S.G., Zheng, R. & Blanchard, J.S. Biochemistry 36, 15081–15088 (1997).

    Article  CAS  Google Scholar 

  21. Baker, P.J., Britton, K.L., Rice, W., Rob, A. & Stillman, T.J. J. Mol. Biol. 228, 662–671 (1992).

    Article  CAS  Google Scholar 

  22. Cunningham, O., Dunne, A., Sabido, P., Lightner, D. & Mantle, T.J. J. Biol. Chem. 275, 19009–19017 (2000).

    Article  CAS  Google Scholar 

  23. Leslie, A.G.W. MOSFLM users guide. (MRC-LMB, Cambridge, UK; 1994).

    Google Scholar 

  24. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  25. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  26. De la Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  27. Abrahams J. P. and Leslie A.G.W. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  28. Roussel, A & Cambileau, C. TURBO-FRODO in silicon graphics geometry (Silicon Graphics, Mountain View, California; 1993).

    Google Scholar 

  29. Brünger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR. (Yale University Press, New Haven; 1992).

    Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Structural Biology and the MR Science Programs in RIKEN (to Y.S.), and the Special Postdoctoral Researchers Program in RIKEN (to A.K.). We thank S. Adachi and H. Shimizu for diffraction data processing and also A.F. McDonagh for careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, A., Park, SY., Miyatake, H. et al. Crystal structure of rat biliverdin reductase. Nat Struct Mol Biol 8, 221–225 (2001). https://doi.org/10.1038/84955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing