Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia

Abstract

The gene that encodes nuclear factor κ (NF-κB) essential modulator (or NEMO, also known as IKKγ) is required for activation of the transcription factor NF-κB. We describe mutations in the puta-tive zinc-finger domain of NEMO that result in an X-linked primary immunodeficiency characterized by hyper-IgM syndrome and hypohydrotic ectodermal dysplasia (XHM-ED). These mutations prevent CD40 ligand (CD40L)-mediated degradation of inhibitor of NF-κB α (IκB-α) and account for the following observations: B cells from XHM-ED patients are unable to undergo immunoglobulin class-switch recombination and antigen-presenting cells (APCs) are unable to synthesize the NF-κB–regulated cytokines interleukin 12 (IL-12) or tumor necrosis factor α (TNF-α) when stimulated with CD40L. Nevertheless, innate immunity is preserved in XHM-ED patients because APCs retain the capacity to respond to stimulation by lipopolysaccharide or Staphylococcus aureus Cowan's antigen (SAC). Overall, the phenotype observed in XHM-ED patients shows that the putative zinc-finger domain of NEMO has a regulatory function and demonstrates the definite requirement of CD40-mediated NF-κB activation for B cell immunoglobulin class-switching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NEMO mutations.
Figure 2: Defective IκB-α activation XHM-ED patients.
Figure 3: B cells from XHM-ED patients have diminished expression of cell surface molecules when stimulated with CD40L.
Figure 4: XHM-ED patients fail to secrete IL-12 and TNF-α when stimulated with CD40L.
Figure 5: T cells from XHM-ED secrete normal concentrations of IFN-γ.

Similar content being viewed by others

References

  1. Callard, R. E., Armitage, R. J., Fanslow, W. C. & Spriggs, M. K. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol. Today 14, 559–564 (1993).

    Article  CAS  Google Scholar 

  2. Notarangelo, L. D., Duse, M. & Ugazio, A. G. Immunodeficiency with hyper-IgM (HIM). Immunodef. Rev. 3, 101–121 (1992).

    CAS  PubMed  Google Scholar 

  3. Kroczek, R. A. et al. Defective expression of CD40 ligand on T cells causes “X-linked immunodeficiency with hyper-IgM (HIGM1)”. Immunol. Rev. 138, 39–59 (1994).

    Article  CAS  Google Scholar 

  4. DiSanto, J. P., Bonnefoy, J. Y., Gauchat, J. F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 361, 541–543 (1993).

    Article  CAS  Google Scholar 

  5. Han, S. et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  6. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  Google Scholar 

  7. Renshaw, B. R. et al. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180, 1889–1900 (1994).

    Article  CAS  Google Scholar 

  8. Allen, R. C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  Google Scholar 

  9. Jain, A. et al. Defects of T-cell effector function and post-thymic maturation in X- linked hyper-IgM syndrome. J. Clin. Invest. 103, 1151–1158 (1999).

    Article  CAS  Google Scholar 

  10. Monreal, A. W. et al. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nature Genet. 22, 366–369 (1999).

    Article  CAS  Google Scholar 

  11. Kere, J. et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nature Genet. 13, 409–416 (1996).

    Article  CAS  Google Scholar 

  12. Jin, D. Y. & Jeang, K. T. Isolation of full-length cDNA and chromosomal localization of human NF-κB modulator NEMO to Xq28. J. Biomed. Sci. 6, 115–120 (1999).

    CAS  PubMed  Google Scholar 

  13. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  Google Scholar 

  14. Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell. Biol. 10, 129–133 (2000).

    Article  CAS  Google Scholar 

  15. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  16. Maniatis, T. A ubiquitin ligase complex essential for the NF-κB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13, 505–510 (1999).

    Article  CAS  Google Scholar 

  17. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466–472 (2000).

    Article  CAS  Google Scholar 

  18. Zonana, J. et al. A Novel X-Linked Disorder of Immune Deficiency and Hypohidrotic Ectodermal Dysplasia Is Allelic to Incontinentia Pigmenti and Due to Mutations in IKK-γ (NEMO). Am. J. Hum. Genet. 67 (2000).

  19. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  20. Abbas, A. A., Licthman, A. H. & Prober, J. S. Cellular and Molecular Immunology. (Saunders, Philadelphia, 1998).

    Google Scholar 

  21. Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  Google Scholar 

  22. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  Google Scholar 

  23. Grammer, A. C. et al. TNF receptor-associated factor-3 signaling mediates activation of p38 and Jun N-terminal kinase, cytokine secretion, and Ig production following ligation of CD40 on human B cells. J. Immunol. 161, 1183–1193 (1998).

    CAS  PubMed  Google Scholar 

  24. Sutherland, C. L., Heath, A. W., Pelech, S. L., Young, P. R. & Gold, M. R. Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor. J. Immunol. 157, 3381–3390 (1996).

    CAS  PubMed  Google Scholar 

  25. Shu, U. et al. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur. J. Immunol. 25, 1125–1128 (1995).

    Article  CAS  Google Scholar 

  26. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  27. Yan, M. et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290, 523–527 (2000).

    Article  CAS  Google Scholar 

  28. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  Google Scholar 

  29. Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353–362 (1999).

    Article  CAS  Google Scholar 

  30. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the families studied for their invaluable contribution to this project; R. Dhanasekaran for technical assistance; V. Dixit (Genentech), J. Derry and W. Fanslow (Immunex), P. Lipsky, A. Grammer and K. Brown for helpful discussions; and U. Seibenlist for critical review of the manuscript. Supported by the Immune Deficiency Foundation and the National Foundation of Ectodermal Dysplasia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Strober.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Ma, C., Liu, S. et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2, 223–228 (2001). https://doi.org/10.1038/85277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing