Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene regulation mediated by calcium signals in T lymphocytes

A Corrigendum to this article was published on 01 March 2008

This article has been updated

Abstract

Modulation of many signaling pathways in antigen-stimulated T and B cells results in global changes in gene expression. Here we investigate the contribution of calcium signaling to gene expression in T cells using cell lines from two severe-combined immunodeficiency patients with several cytokine deficiencies and diminished activation of the transcription factor NFAT nuclear factor of activated T cells. These T cells show a strong defect in transmembrane calcium influx that is also apparent in their B cells and fibroblasts. DNA microarray analysis of calcium entry–deficient and control T cells shows that Ca2+ signals both activate and repress gene expression and are largely transduced through the phosphatase calcineurin. We demonstrate an elaborate network of signaling pathways downstream of the T cell receptor, explaining the complexity of changes in gene expression during T cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dephosphorylation and nuclear translocation of NFAT in SCID patients' T cells is facilitated by high [Ca2+]ex.
Figure 2: The SCID patients' T cells have a primary defect in transmembrane calcium influx.
Figure 3: The calcium entry defect affects SCID patients' B cells and fibroblasts.
Figure 4: Calcium-dependent gene expression in T cells.
Figure 5: T cells deficient in calcium influx fail to repress the expression of certain genes.
Figure 6: Calcineurin is involved in expression of most of calcium-regulated genes.
Figure 7: Calcineurin is involved in expression of most calcium-regulated genes.

Similar content being viewed by others

Change history

  • 06 February 2008

    In the version of the article initially published, many errors and inappropriate manipulations were made in Figures 1, 3 and 5 (see PDF for details).

References

  1. van Leeuwen, J. E. & Samelson, L. E. T cell antigen-receptor signal transduction. Curr. Opin. Immunol. 11, 242–248 (1999).

    Article  Google Scholar 

  2. Braun, J., Sha'afi, R. I. & Unanue, E. R. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular 45Ca2+ in B lymphocytes. J. Cell Biol. 82, 755–766 (1979).

    Article  CAS  Google Scholar 

  3. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  Google Scholar 

  4. Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402, 24–30 (1999).

    Article  Google Scholar 

  5. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  6. Teague, T. K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl Acad. Sci. USA 96, 12691–12696 (1999).

    Article  CAS  Google Scholar 

  7. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  CAS  Google Scholar 

  8. Putney, J. W., Jr. A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12 (1986).

    Article  CAS  Google Scholar 

  9. Clapham, D. E. Intracellular calcium. Replenishing the stores. Nature 375, 634–635 (1995).

    Article  CAS  Google Scholar 

  10. Parekh, A. B. & Penner, R. Store depletion and calcium influx. Physiol. Rev. 77, 901–930 (1997).

    Article  CAS  Google Scholar 

  11. Putney, J. W. & Ribeiro, C. M. P. Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol. Life Sci. 57, 1272–1286 (2000).

    Article  CAS  Google Scholar 

  12. Putney, J. W. “Kissin' cousins”: intimate plasma membrane-ER interactions underlie capacitative calcium entry. Cell 99, 5–8 (1999).

    Article  CAS  Google Scholar 

  13. Okamura, H. & Rao, A. Transcriptional regulation in lymphocytes. Curr. Opin. Cell. Biol., in press (2001).

  14. Crabtree, G. R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96, 611–614 (1999).

    Article  CAS  Google Scholar 

  15. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    Article  CAS  Google Scholar 

  16. Timmerman, L. A., Clipstone, N. A., Ho, S. N., Northrop, J. P. & Crabtree, G. R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  CAS  Google Scholar 

  17. Loh, C. et al. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J. Biol. Chem. 271, 10884–10891 (1996).

    Article  CAS  Google Scholar 

  18. Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  Google Scholar 

  19. Li, W., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998).

    Article  CAS  Google Scholar 

  20. Feske, S. et al. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119–2126 (1996).

    Article  CAS  Google Scholar 

  21. Feske, S., Draeger, R., Peter, H. H., Eichmann, K. & Rao, A. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T Cells. J. Immunol. 165, 297–305 (2000).

    Article  CAS  Google Scholar 

  22. Feske, S., Draeger, R., Peter, H. H. & Rao, A. Impaired NFAT regulation and its role in a severe combined immunodeficiency. Immunobiology 202, 134–151 (2000).

    Article  CAS  Google Scholar 

  23. Hofer, A. M., Fasolato, C. & Pozzan, T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J. Cell Biol. 140, 325–334 (1998).

    Article  CAS  Google Scholar 

  24. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).

    Article  CAS  Google Scholar 

  25. Gonzalez, J. E. & Tsien, R. Y. Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem. Biol. 4, 269–277 (1997).

    Article  CAS  Google Scholar 

  26. Gonzalez, J. E. & Tsien, R. Y. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272–1280 (1995).

    Article  CAS  Google Scholar 

  27. DeRisi, J. L. & Iyer, V. R. Genomics and array technology. Curr. Opin. Oncol. 11, 76–79 (1999).

    Article  CAS  Google Scholar 

  28. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  29. Rogge, L. et al. Transcript imaging of the development of human T helper cells using oligonucleotide arrays. Nature Genet. 25, 96–101 (2000).

    Article  CAS  Google Scholar 

  30. Alizadeh, A. et al. The Lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 64, 71–78 (1999).

    Article  CAS  Google Scholar 

  31. Schlesier, M. et al. Primary severe immunodeficiency due to impaired signal transduction in T cells. Immunodeficiency 4, 133–136 (1993).

    CAS  PubMed  Google Scholar 

  32. Montell, C. New light on Trp and Trpl. Mol. Pharmacol. 52, 755–763 (1997).

    Article  CAS  Google Scholar 

  33. Putney, J. W. & McKay, R. R. Capacitative calcium entry channels. Bioessays 21, 38–46 (1999).

    Article  Google Scholar 

  34. Ma, H. T.et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287, 1647–1651 (2000).

    Article  CAS  Google Scholar 

  35. Boulay, C. et al. Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc. Natl Acad. Sci. USA 96, 14955–14960 (1999).

    Article  CAS  Google Scholar 

  36. Kiselyov, K., Mignery, G. A., Zhu, M. X. & Muallem, S. The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol. Cell 4, 423–429 (1999).

    Article  CAS  Google Scholar 

  37. Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994).

    CAS  PubMed  Google Scholar 

  38. Le Deist, F. et al. A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood 85, 1053–1062 (1995).

    CAS  PubMed  Google Scholar 

  39. Fanger, C. M., Hoth, M., Crabtree, G. R. & Lewis, R. S. Characterization of T cell mutants with defects in capacitative calcium entry. Genetic evidence for the physiological roles of crac channels. J. Cell Biol. 131, 655–667 (1995).

    Article  CAS  Google Scholar 

  40. Serafini, A. T. et al. Isolation of mutant T lymphocytes with defects in capacitative calcium entry. Immunity 3, 239–250 (1995).

    Article  CAS  Google Scholar 

  41. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  Google Scholar 

  42. Aramburu, J., Rao, A. & Klee, C. B. Calcineurin: from structure to function. Curr. Top. Cell Regul. 36, 237–295 (2000).

    Article  CAS  Google Scholar 

  43. Tokumitsu, H., Enslen, H. & Soderling, T. R. Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 270, 19320–19324 (1995).

    Article  CAS  Google Scholar 

  44. Carrion, A. M., Link, W. A., Ledo, F., Mellstrom, B. & Naranjo, J. R. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999).

    Article  CAS  Google Scholar 

  45. McKinsey, T. A., Zhang, C. L., Lu, J. R. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  Google Scholar 

  46. Youn, H. D., Grozinger, C. M. & Liu, J. O. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J. Biol. Chem. 275, 22563–22567 (2000).

    Article  CAS  Google Scholar 

  47. Youn, H. D., Sun, L., Prywes, R. & Liu, J. O. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286, 790–793 (1999).

    Article  CAS  Google Scholar 

  48. Wang, D. Z., McCaffrey, P. G. & Rao, A. The cyclosporin-sensitive transcription factor NFATp is expressed in several classes of cells in the immune system. Ann. NY Acad. Sci. 766, 182–194 (1995).

    Article  CAS  Google Scholar 

  49. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  50. Chuvpilo, S. et al. Alternative polyadenylation events contribute to the induction of NF- ATc in effector T cells. Immunity 10, 261–269 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Niemeyer for providing us with the patient data. Supported in part by grants from the Deutsche Forschungsgemeinschaft (Fe496/1-1) and in part by NIH grants CA42471 and AI40127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feske, S., Giltnane, J., Dolmetsch, R. et al. Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2, 316–324 (2001). https://doi.org/10.1038/86318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing