Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum

Abstract

In recent years, it has become clear that motor learning, as revealed by associative eyelid conditioning and adaptation of the vestibulo-ocular reflex, contributes to the well-established cerebellar functions of sensorimotor integration and control. Long-term depression of the parallel fiber–Purkinje cell synapse (which is often called 'cerebellar LTD') is a cellular phenomenon that has been suggested to underlie these forms of learning. However, it is clear that parallel fiber LTD, by itself, cannot account for all the properties of cerebellar motor learning. Here we review recent electrophysiological experiments that have described a rich variety of use-dependent plasticity in cerebellum, including long-term potentiation (LTP) and LTD of excitatory and inhibitory synapses, and persistent modulation of intrinsic neuronal excitability. Finally, using associative eyelid conditioning as an example, we propose some ideas about how these cellular phenomena might function and interact to endow the cerebellar circuit with particular computational and mnemonic properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cerebellar circuitry.

Bob Crimi

Figure 2: Climbing fiber long-term depression.
Figure 3: Rapid, synaptically driven increases in intrinsic excitability of DCN and granule cells.
Figure 4: A summary of synaptic and non-synaptic plasticity in the cerebellar circuit.

Bob Crimi

Similar content being viewed by others

References

  1. Marr, D. Theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–455 (1969).

    Article  CAS  Google Scholar 

  2. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  3. Kim, J. J. & Thompson, R. F. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 20, 177–181 (1997).

    Article  CAS  Google Scholar 

  4. Mauk, M. D. Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18, 343–346 (1997).

    Article  CAS  Google Scholar 

  5. De Zeeuw, C. I. et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar long-term depression and adaptation of the vestibulo-ocular reflex. Neuron 20, 495–508 (1998).

    Article  CAS  Google Scholar 

  6. Raymond, J. L. & Lisberger, S. G. Hypotheses about the neural trigger for plasticity in the circuit for the vestibulo-ocular reflex. Prog. Brain Res. 124, 235–246 (2000).

    Article  CAS  Google Scholar 

  7. Ito, M., Sakurai, M. & Tongroach, P. Climbing fiber induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. (Lond.) 324, 113–134 (1982).

    Article  CAS  Google Scholar 

  8. Hartell, N.A. Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron 16, 601–610 (1996).

    Article  CAS  Google Scholar 

  9. Eilers, J., Takechi, H., Finch, E. A., Augustine, G. J. & Konnerth, A. Local dendritic Ca2+ signaling induces cerebellar long-term depression. Learn. Mem. 4, 159–168 (1997).

    Article  CAS  Google Scholar 

  10. Bear, M. F. & Linden, D. J. in The Synapse (W. M. Cowan & K. Davies, eds.) 455–517 (Johns Hopkins Univ. Press, 2000).

    Google Scholar 

  11. Wang, Y.-T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  Google Scholar 

  12. Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. & Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 (2000).

    Article  CAS  Google Scholar 

  13. Sakurai, M. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J. Physiol. (Lond.) 394, 463–480 (1987).

    Article  CAS  Google Scholar 

  14. Sakurai, M. Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc. Natl. Acad. Sci. USA 87, 3383–3385 (1990).

    Article  CAS  Google Scholar 

  15. Hirano, T. Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119, 141–144 (1990).

    Article  CAS  Google Scholar 

  16. Hirano, T. Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse 7, 321–323 (1991).

    Article  CAS  Google Scholar 

  17. Crepel, F. & Jaillard, D. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J. Physiol. (Lond.) 432, 123–141 (1991).

    Article  CAS  Google Scholar 

  18. Shibuki, K. & Okada, D. Cerebellar long-term potentiation under suppressed postsynaptic Ca activity. Neuroreport 3, 231–234 (1992).

    Article  CAS  Google Scholar 

  19. Salin, P. A., Malenka, R. C. & Nicoll, R. A. cAMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).

    Article  CAS  Google Scholar 

  20. Linden, D. J. Long-term potentiation of glial synaptic currents in cerebellar culture. Neuron 18, 983–994 (1997).

    Article  CAS  Google Scholar 

  21. Linden, D. J. Synaptically-evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture. J. Neurophysiol. 79, 3151–3156 (1998).

    Article  CAS  Google Scholar 

  22. Linden, D. J. & Ahn, S. Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation. J. Neurosci. 19, 10221–10227 (1999).

    Article  CAS  Google Scholar 

  23. Chavis, P., Mollard, P., Bockaert, J. & Manzoni, O. Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells. Neuron 20, 773–781 (1998).

    Article  CAS  Google Scholar 

  24. Kimura, S., Uchiyama, S., Takahashi, H. E. & Shibuki, K. cAMP-dependent long-term potentiation of nitric oxide release from cerebellar parallel fibers in rats. J. Neurosci. 18, 8551–8558 (1998).

    Article  CAS  Google Scholar 

  25. Storm, D. R., Hansel, C., Hacker, B., Parent, A. & Linden, D. J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20, 1199–1210 (1998).

    Article  CAS  Google Scholar 

  26. Dittman, J. S. & Regehr, W. G. Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J. Neurosci. 18, 6147–6162 (1998).

    Article  CAS  Google Scholar 

  27. Crepel, F., Mariani, J. & Delhaye-Bouchaud, N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J. Neurobiol. 7, 567–578 (1976).

    Article  CAS  Google Scholar 

  28. Strata, P. & Rossi, F. Plasticity of the olivocerebellar pathway. Trends Neurosci. 21, 407–413 (1998).

    Article  CAS  Google Scholar 

  29. Hansel, C. & Linden, D. J. Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron 26, 473–482 (2000).

    Article  CAS  Google Scholar 

  30. Llinas, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (Lond.) 305, 171–195 (1980).

    Article  CAS  Google Scholar 

  31. Llinas, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.) 305, 197–213 (1980).

    Article  CAS  Google Scholar 

  32. Raman, I. M. & Bean, B. P. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526 (1997).

    Article  CAS  Google Scholar 

  33. Ross, W. N. & Werman, R. Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J. Physiol. (Lond.) 389, 319–336 (1987).

    Article  CAS  Google Scholar 

  34. Konnerth, A., Dreessen, J. & Augustine, G. J. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 89, 7051–7055 (1992).

    Article  CAS  Google Scholar 

  35. Batchelor, A. M. & Garthwaite, J. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 74–77 (1997).

    Article  CAS  Google Scholar 

  36. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992).

    Article  CAS  Google Scholar 

  37. Llano, I., Leresche, N. & Marty, A. Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6, 565–574 (1991).

    Article  CAS  Google Scholar 

  38. Hashimoto, T., Ishii, T. & Ohmori, H. Release of Ca is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat. J. Physiol. (Lond.) 497, 611–627 (1996).

    Article  CAS  Google Scholar 

  39. Khodakhah, K. & Armstrong, C.M. Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA 94, 14009–14014 (1997).

    Article  CAS  Google Scholar 

  40. Kano, M., Kano, M., Fukunaga, K. & Konnerth, A. Ca-induced rebound potentiation of γ-aminobutyric acid-mediated currents requires activation of Ca/calmodulin-dependent kinase II. Proc. Natl. Acad. Sci. USA 93, 13351–13356 (1996).

    Article  CAS  Google Scholar 

  41. Kawaguchi, S. & Hirano, T. Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABAB receptors in a Purkinje neuron. Neuron 27, 339–347 (2000).

    Article  CAS  Google Scholar 

  42. Kano, M. Long-lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje cells: its properties and possible mechanisms. Behav. Brain Sci. 19, 354–361 (1996).

    Article  Google Scholar 

  43. Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  Google Scholar 

  44. Kase, M., Miller, D. C. & Noda, H. Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements. J. Physiol. (Lond.) 300, 539–555 (2000).

    Article  Google Scholar 

  45. Pellerin, P.-P. & Lamarre, Y. Local field potential oscillations in primate cerebellar cortex during voluntary movement. J. Neurophysiol. 78, 3502–3507 (1997).

    Article  CAS  Google Scholar 

  46. D'Angelo, E., Rossi, P., Armano, S. & Taglietti, V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fibre–granule cell transmission in rat cerebellum. J. Neurophysiol. 81, 277–287 (1999).

    Article  CAS  Google Scholar 

  47. Armano, S., Rossi, P., Taglietti, V. & D'Angelo, E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J. Neurosci. 20, 5208–5216 (2000).

    Article  CAS  Google Scholar 

  48. Maex, R. & De Schutter, E. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J. Neurophysiol. 80, 2521–2537 (1998).

    Article  CAS  Google Scholar 

  49. Rossi, P., D'Angelo, E. & Taglietti, V. Differential long-lasting potentiation of the NMDA and non-NMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule cells. Eur. J. Neurosci. 8, 1182–1189 (1996).

    Article  CAS  Google Scholar 

  50. Schweighofer, N., Doya, K. & Lay, F. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103, 35–50 (2001).

    Article  CAS  Google Scholar 

  51. Racine, R. J., Wilson, D. A., Gingell, R. & Sutherland, D. Long-term potentiation in the interpositus and vestibular nuclei in the rat. Exp. Brain Res. 63, 158–162 (1986).

    Article  CAS  Google Scholar 

  52. Aizenman, C., Manis, P. B. & Linden, D. J. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21, 827–835 (1998).

    Article  CAS  Google Scholar 

  53. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  54. Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993).

    Article  CAS  Google Scholar 

  55. Hansel, C., Artola, A. & Singer, W. Relation between dendritic Ca levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur. J. Neurosci. 9, 2309–2322 (1997).

    Article  CAS  Google Scholar 

  56. Ouardouz, M. & Sastry, B. R. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J. Neurophysiol. 84,1414–1421 (2000).

    Article  CAS  Google Scholar 

  57. Morishita, W. & Sastry, B. R. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J. Neurophysiol. 76, 59–68 (1996).

    Article  CAS  Google Scholar 

  58. Alkon, D. L. Changes of membrane currents during learning. J. Exp. Biol. 112, 95–112 (1984).

    CAS  Google Scholar 

  59. Brons, J. F. & Woody, C. D. Long-term changes in excitability of cortical neurons after Pavlovian conditioning and extinction. J. Neurophysiol. 44, 605–615 (1980).

    Article  CAS  Google Scholar 

  60. Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc. Natl. Acad. Sci. USA. 83, 2733–2737 (1986).

    Article  CAS  Google Scholar 

  61. Schreurs, B. G., Gusev, P. A., Tomsic, D., Alkon, D. L. & Shi, T. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J. Neurosci. 18, 5498–5507 (1998).

    Article  CAS  Google Scholar 

  62. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    Article  CAS  Google Scholar 

  63. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  Google Scholar 

  64. Aizenman, C. D. & Linden, D. J. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat. Neurosci. 3, 109–111 (2000).

    Article  CAS  Google Scholar 

  65. Aizenman, C. D. & Linden, D. J. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiol. 82, 1697–1717 (1999).

    Article  CAS  Google Scholar 

  66. Fregnac, Y. Homeostasis or synaptic plasticity? Nature 391, 845–846 (1998).

    Article  CAS  Google Scholar 

  67. D'Angelo, E. et al. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism. J. Neurosci. 21, 759–770 (2001).

    Article  CAS  Google Scholar 

  68. Medina, J. F. & Mauk, M. D. Computer simulation of cerebellar information processing. Nat. Neurosci. 3, 1205–1211 (2000).

    Article  CAS  Google Scholar 

  69. Ohyama, T. & Mauk, M. D. Latent acquisition of timed responses in cerebellar cortex. J. Neurosci. 21, 682–690 (2001).

    Article  CAS  Google Scholar 

  70. Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 (1996).

    Article  CAS  Google Scholar 

  71. Medina, J. F., Garcia, K. S. & Mauk, M. D. A mechanism for savings in the cerebellum. J. Neurosci. (in press).

  72. Medina, J. F. & Mauk, M. D. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J. Neurosci. 19, 7140–7151 (1999).

    Article  CAS  Google Scholar 

  73. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    Article  CAS  Google Scholar 

  74. Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 2, 521–527 (1999).

    Article  CAS  Google Scholar 

  75. McCormick, D. A. & Thompson, R. F. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci. 4, 2811–2822 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NWO-ALW 810.37.003 (C.H.), USPHS MH01590, MH51106, MH61974 and the Develbiss Fund (D.J.L.) and EC grants PL97 0182 and PL97 6060, and INFM PRA-Cady (E.D.). We thank C. De Zeeuw, M. Mauk, M. Schmolesky and J. Weber for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Linden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansel, C., Linden, D. & D'Angelo, E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4, 467–475 (2001). https://doi.org/10.1038/87419

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing