Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breast cancer genetics: What we know and what we need

A Correction to this article was published on 01 June 2001

Abstract

Breast cancer results from genetic and environmental factors leading to the accumulation of mutations in essential genes. Genetic predisposition may have a strong, almost singular effect, as with BRCA1 and BRCA2, or may represent the cumulative effects of multiple low-penetrance susceptibility alleles. Here we review high- and low-penetrance breast-cancer-susceptibility alleles and discuss ongoing efforts to identify additional susceptibility genes. Ultimately these discoveries will lead to individualized breast cancer risk assessment and a reduction in breast cancer incidence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Penetrance estimates for breast cancer risk in women with germline BRCA1 mutations vary depending on the population used for analysis.

Steve Horwitz

Figure 2: a, BRCA1 protein.

Steve Horwitz

Similar content being viewed by others

References

  1. Couch, F.J. et al. BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N. Engl. J. Med. 336, 1409–1415 (1997).

    Article  CAS  Google Scholar 

  2. Peto, J. et al. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer [see comments]. J. Natl. Cancer Inst. 91, 943–949 (1999).

    Article  CAS  Google Scholar 

  3. Easton, D.F., Bishop, D.T., Ford, D. & Crockford, G.P. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am. J.Hum. Genet. 52, 678–701 (1993).

    CAS  PubMed  Google Scholar 

  4. Struewing, J.P., Tarone, R.E., Brody, L.C., Li, F.P. & Boice, J.D. Jr. BRCA1 mutations in young women with breast cancer. Lancet 347, 1493 (1996).

    Article  CAS  Google Scholar 

  5. Fodor, F.H. et al. Frequency and carrier risk associated with common BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer patients. Am. J. Hum. Genet. 63, 45–51 (1998).

    Article  CAS  Google Scholar 

  6. Easton, D.F., Narod, S.A., Ford, D. & Steel, M. The genetic epidemiology of BRCA1. Breast Cancer Linkage Consortium. Lancet 344, 761 (1994).

    Article  CAS  Google Scholar 

  7. Easton, D.F., Ford, D. & Bishop, D.T. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 56, 265–271 (1995).

    Article  CAS  Google Scholar 

  8. Struewing, J.P. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med. 336, 1401–1408 (1997).

    Article  CAS  Google Scholar 

  9. Ford, D., Easton, D.F., Bishop, D.T., Narod, S.A. & Goldgar, D.E. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343, 692–695 (1994).

    Article  CAS  Google Scholar 

  10. Shih, H. et al. BRCA1 and BRCA2 mutations in breast cancer families with multiple primary cancers. Clin Cancer Res 6, 4259–4264 (2000).

    CAS  PubMed  Google Scholar 

  11. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  Google Scholar 

  12. Chapman, M.S. & Verma, I.M. Transcriptional activation by BRCA1. Nature 382, 678–679 (1996).

    Article  CAS  Google Scholar 

  13. Zhang, H. et al. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 16, 1713–1721 (1998).

    Article  CAS  Google Scholar 

  14. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    Article  CAS  Google Scholar 

  15. Scully, R. & Livingston, D.M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  CAS  Google Scholar 

  16. Cortez, D., Wang, Y., Qin, J. & Elledge, S.J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    Article  CAS  Google Scholar 

  17. Lee, J.S., Collins, K.M., Brown, A.L., Lee, C.H. & Chung, J.H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  CAS  Google Scholar 

  18. Larson, J.S., Tonkinson, J.L. & Lai, M.T. A BRCA1 mutant alters G2-M cell cycle control in human mammary epithelial cells. Cancer Res. 57, 3351–3355 (1997).

    CAS  PubMed  Google Scholar 

  19. Gowen, L.C., Avrutskaya, A.V., Latour, A.M., Koller, B.H. & Leadon, S.A. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281, 1009–1012 (1998).

    Article  CAS  Google Scholar 

  20. Zhong, Q. et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    Article  CAS  Google Scholar 

  21. Easton, D.F. & Consortium, T.B.C.L. Cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 91, 1310–1316 (1999).

    Article  Google Scholar 

  22. Warner, E. et al. Prevalence and penetrance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J Natl Cancer Inst 91, 1241–1247 (1999).

    Article  CAS  Google Scholar 

  23. Wooster R et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–92 (1995).

    Article  CAS  Google Scholar 

  24. Tavtigian, S.V. et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nature Genet. 12, 333–337 (1996).

    Article  CAS  Google Scholar 

  25. Chen, J.J., Silver, D., Cantor, S., Livingston, D.M. & Scully, R. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res. 59, 1752s–1756s (1999).

    CAS  PubMed  Google Scholar 

  26. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 17, 423–430 (1997).

    Article  CAS  Google Scholar 

  27. Friedman, L.S. et al. Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res. 58, 1338–1343 (1998).

    CAS  PubMed  Google Scholar 

  28. Patel, K.J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    Article  CAS  Google Scholar 

  29. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    Article  CAS  Google Scholar 

  30. Nasmyth K. Peters JM . Uhlmann F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science. 288,1379–1385 (2000).

    Article  CAS  Google Scholar 

  31. Boardman, L.A. et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann. Int. Med. 128, 896–899 (1998).

    Article  CAS  Google Scholar 

  32. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  33. Wooster, R. et al. A germline mutation in the androgen receptor gene in two brothers with breast cancer and Reifenstein syndrome. Nature Genet. 2, 132–134 (1992).

    Article  CAS  Google Scholar 

  34. Lobaccaro, J.M. et al. Androgen receptor gene mutation in male breast cancer. Hum. Mol. Genet. 2, 1799–1802 (1993).

    Article  CAS  Google Scholar 

  35. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  Google Scholar 

  36. Morrell, D., Cromartie, E. & Swift, M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl. Cancer Inst. 77, 89–92 (1986).

    CAS  PubMed  Google Scholar 

  37. Swift, M., Reitnauer, P.J., Morrell, D. & Chase, C.L. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med. 316, 1289–1294 (1987).

    Article  CAS  Google Scholar 

  38. Swift, M., Morrell, D., Massey, R.B. & Chase, C.L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med. 325, 1831–1836 (1991).

    Article  CAS  Google Scholar 

  39. Inskip, H.M., Kinlen, L.J., Taylor, A.M., Woods, C.G. & Arlett, C.F. Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br. J. Cancer 79, 1304–1307 (1999).

    Article  CAS  Google Scholar 

  40. Janin, N. et al. Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families. Br. J. Cancer 80, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  41. Broeks, A. et al. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am. J. Hum. Genet. 66, 494–500 (2000).

    Article  CAS  Google Scholar 

  42. FitzGerald, M.G. et al. Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nature Genet. 15, 307–310 (1997).

    Article  CAS  Google Scholar 

  43. Izatt, L. et al. Identification of germline missense mutations and rare allelic variants in the ATM gene in early-onset breast cancer. Genes Chrom. Cancer 26, 286–294 (1999).

    Article  CAS  Google Scholar 

  44. Chen, J., Birkholtz, G.G., Lindblom, P., Rubio, C. & Lindblom, A. The role of ataxia-telangiectasia heterozygotes in familial breast cancer. Cancer Res. 58, 1376–1379 (1998).

    CAS  PubMed  Google Scholar 

  45. Vorechovsky, I. et al. ATM mutations in cancer families. Cancer Res. 56, 4130–4133 (1996).

    CAS  PubMed  Google Scholar 

  46. Laake, K. et al. Screening breast cancer patients for Norwegian ATM mutations. Br. J. Cancer 83, 1650–1653 (2000).

    Article  CAS  Google Scholar 

  47. Kainu, T. et al. Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc. Natl. Acad. Sci. USA 97, 9603–9608 (2000).

    Article  CAS  Google Scholar 

  48. Thompson, D. et al. Chromsome 13q: Two genes too many? Proc. Am. Assoc. Cancer Res. (2001).

  49. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J.Hum. Genet. 62, 676–689 (1998).

    Article  CAS  Google Scholar 

  50. Lakhani, S.R. et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin. Cancer Res. 6, 782–789 (2000).

    CAS  PubMed  Google Scholar 

  51. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539 (2001).

    Article  CAS  Google Scholar 

  52. Anonymous. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer 83, 1301–1308 (2000).

  53. Claus, E.B., Schildkraut, J., Iversen, E.S., Berry, D. & Parmigiani, G. Effect of BRCA1 and BRCA2 on the association between breast cancer risk and family history. J. Natl. Cancer. Inst. 90, 1824–1890 (1998).

    Article  CAS  Google Scholar 

  54. Krontiris, T.G., Devlin, B., Karp, D.D., Robert, N. J. & Risch, N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med. 329, 517–523 (1993).

    Article  CAS  Google Scholar 

  55. Phelan, C.M. et al. Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nature Genet. 12, 309–311 (1996).

    Article  CAS  Google Scholar 

  56. Rebbeck, T. et al. Modification of BRCA1-associated breast cancer risk by the polymorphic androgen receptor CAG repeat. Am. J. Hum. Genet. 64, 1371–1377 (1999).

    Article  CAS  Google Scholar 

  57. Park, J.J. et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res. 60, 5946–5949 (2000).

    CAS  PubMed  Google Scholar 

  58. Tirkkonen, M. et al. Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 57, 1222–1227 (1997).

    CAS  PubMed  Google Scholar 

  59. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    Article  CAS  Google Scholar 

  60. Eisen, A., Rebbeck, T.R., Wood, W.C. & Weber, B.L. Prophylactic surgery in women with a hereditary predisposition to breast and ovarian cancer. J. Clin. Oncol. 18, 1980–1995 (2000).

    Article  CAS  Google Scholar 

  61. Peto, J. & Mack, T.M. High constant incidence in twins and other relatives of women with breast cancer. Nature Genet. 26, 411–414 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathanson, K., Wooster, R. & Weber, B. Breast cancer genetics: What we know and what we need. Nat Med 7, 552–556 (2001). https://doi.org/10.1038/87876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/87876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing