Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines

Abstract

Leukocyte transendothelial migration (TEM) is thought to be a chemotactic process controlled by chemokine gradients across the endothelium. Using cytokine-activated human umbilical vascular endothelial cells (HUVECs) as a model of inflamed endothelium, we have shown that apical endothelial chemokines can trigger robust peripheral blood lymphocyte (PBL) migration across endothelial cells. Lymphocyte TEM was promoted by physiological shear stress applied continuously to migrating lymphocytes. Lymphocyte integrins, intact actin cytoskeleton and Gi protein–mediated chemokine signaling, but not a chemotactic gradient, were mandatory for TEM. PBL TEM did not require intracellular free calcium or intact phosphatidyl inositol kinase activity in migrating lymphocytes. Thus, lymphocyte TEM is promoted by fluid shear-induced mechanical signals coupled to Gi protein signals at apical endothelial zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of leukocyte TEM under physiological shear flow in a parallel plate flow-chamber assay.
Figure 2: Apical endothelial chemokines promote lymphocyte TEM under physiological flow conditions.
Figure 3: Role of integrin avidity in PBL adhesion and TEM through TNF-α–activated HUVECs under physiological flow.
Figure 4: Shear stress must be continuously applied on adherent lymphocytes rather than on the endothelial surface to promote TEM.
Figure 5: Ultrastructural analysis of lymphocyte-endothelium contacts under different shear flow conditions.
Figure 6: The context and dose-dependence of chemokine signaling to PBLs are critical for transmigration across TNF-α–activated HUVECs.
Figure 7: Chemokine-triggered lymphocyte TEM does not depend on the integrity of the endothelial barrier junctions.
Figure 8: Chemokine-triggered lymphocyte TEM does not require PI3K activity or intracellular Ca2+.

Similar content being viewed by others

References

  1. Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Mackay, C. R. Chemokines: immunology's high impact factors. Nature Immunol. 2, 95–101 (2001).

    Article  CAS  Google Scholar 

  3. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Bargatze, R. F. & Butcher, E. C. Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J. Exp. Med. 178, 367–372 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Campbell, J. J., Hedrick, J., Zlotnik, A., Siani, M. A. & Thompson, D. A. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Grabovsky, V. et al. Sub-second Induction of integrin clustering by immobilized chemokines enhances leukocyte capture and rolling under flow prior to firm adhesion to endothelium. J. Exp. Med. 192, 495–505 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bianchi, E., Bender, J. R., Blasi, F. & Pardi, R. Through and beyond the wall: late steps in leukocyte transendothelial migration. Immunol. Today 18, 586–591 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Weber, K. S., von Hundelshausen, P., Clark-Lewis, I., Weber, P. C. & Weber, C. Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur. J. Immunol. 29, 700–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Allport, J. R., Muller, W. A. & Luscinskas, F. W. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J. Cell Biol. 148, 203–216 (1999).

    Article  Google Scholar 

  11. Johnson-Leger, C., Aurrand-Lions, M. & Imhof, B. A. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113, 921–933 (2000).

    CAS  PubMed  Google Scholar 

  12. Shang, X. Z. & Issekutz, A. C. Contribution of CD11a/CD18, CD11b/CD18, ICAM-1 (CD54) and -2 (CD102) to human monocyte migration through endothelium and connective tissue fibroblast barriers. Eur. J. Immunol. 28, 1970–1979 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Ding, Z. et al. Regulation of chemokine-induced transendothelial migration of T lymphocytes by endothelial activation: differential effects on naive and memory T cells. J. Leuko. Biol. 67, 825–833 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Piali, L. et al. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur. J. Immunol. 28, 961–972 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Campbell, J. J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Pablos, J. L. et al. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am. J. Pathol. 155, 1577–1586 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peled, A. et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J. Clin. Invest. 104, 1199–1211 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, Exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luscinskas, F. W. et al. L- and P-selectins, but not CD49d (VLA-4) integrins, mediate monocyte initial attachment to TNF-α-activated vascular endothelium under flow in vitro. J. Immunol. 157, 326–335 (1996).

    CAS  PubMed  Google Scholar 

  21. Su, W. H., Chen, H., Huang, J. & Jen, C. J. Endothelial [Ca2+]i signaling during transmigration of polymorphonuclear leukocytes. Blood 96, 3816–3822 (2000).

    CAS  PubMed  Google Scholar 

  22. Gupta, S. K., Lysko, P. G., Pillarisetti, K., Ohlstein, E. & Stadel, J. M. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J. Biol. Chem. 273, 4282–4287 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Luu, N. T., Rainger, G. E. & Nash, G. B. Differential ability of exogenous chemotactic agents to disrupt transendothelial migration of flowing neutrophils. J. Immunol. 164, 5961–5969 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kuijpers, T. W. et al. Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J. Exp. Med. 178, 279–284 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Del Maschio, A. et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J. Cell. Biol. 135, 497–510 (1996).

    Article  PubMed  Google Scholar 

  26. Andriopoulou, P., Navarro, P., Zanetti, A., Lampugnani, M. G. & Dejana, E. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler. Thromb. Vasc. Biol. 19, 2286–2297 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Candal, F. J. et al. BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvasc. Res. 52, 221–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Honda, S. et al. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor. J. Immunol. 152, 4026–4035 (1994).

    CAS  PubMed  Google Scholar 

  29. Eddy, R. J., Pierini, L. M., Matsumura, F. & Maxfield, F. R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113, 1287–1298. (2000).

    CAS  PubMed  Google Scholar 

  30. Thelen, M. Dancing to the tune of chemokines. Nature Immunol. 2, 129–134 (2001).

    Article  CAS  Google Scholar 

  31. Hendey, B., Klee, C. B. & Maxfield, F. R. Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 258, 296–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Lawson, M. A. & Maxfield, F. R. Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moazzam, F., DeLano, F. A., Zweifach, B. W. & Schmid-Schonbein, G. W. The leukocyte response to fluid stress. Proc. Natl Acad. Sci. USA 94, 5338–5343 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okuyama, M., Ohta, Y., Kambayashi, J. I. & Monden, M. Fluid shear stress induces actin polymerization in human neutrophils. J. Cell. Biochem. 63, 432–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Li, S. et al. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 272, 30455–30462 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Manolopoulos, V. G. et al. Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen. Pharmacol. 34, 107–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto, K., Korenaga, R., Kamiya, A. & Ando, J. Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circ. Res. 87, 385–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Gotsch, U. et al. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J. Cell Sci. 110, 583–588 (1997).

    CAS  PubMed  Google Scholar 

  42. Huang, A. J. et al. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J. Cell Biol. 120, 1371–1380 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Tinsley, J. H., Wu, M. H., Ma, W., Taulman, A. C. & Yuan, S. Y. Activated neutrophils induce hypersensitivity and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J. Biol. Chem. 274, 24930–24934 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Levenberg, S., Katz, B. Z., Yamada, K. M. & Geiger, B. Long-range and selective autoregulation of cell-cell or cell-matrix adhesions by cadherin or integrin ligands. J. Cell Sci. 111, 347–357 (1998).

    CAS  PubMed  Google Scholar 

  45. Burns, A. R. et al. Analysis of tight junctions during neutrophil transendothelial migration. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J. Cell Sci. 113, 45–57 (2000).

    CAS  PubMed  Google Scholar 

  46. Poznansky, M. C. et al. Active movement of T cells away from a chemokine. Nature Med. 6, 543–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Utgaard, J. O., Jahnsen, F. L., Bakka, A., Brandtzaeg, P. & Haraldsen, G. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J. Exp. Med. 188, 1751–1756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawai, T. et al. Selective diapedesis of Th1 cells induced by endothelial cell RANTES. J. Immunol. 163, 3269–3278 (1999).

    CAS  PubMed  Google Scholar 

  49. Carr, M. W., Alon, R. & Springer, T. A. The C-C chemokine MCP-1 differentially modulates the avidity of β1 and β2 integrins on T lymphocytes. Immunity 4, 179–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Jaffe, E. A., Nachman, N. L., Becker, C. J. & Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dwir, O. et al. GlyCAM-1 Supports Leukocyte Tethering and Rolling: evidence for a greater dynamic stability of L-selectin rolling of lymphocytes than of neutrophils. Cell Adhesion Commun. 6, 349–370 (1998).

    Article  CAS  Google Scholar 

  52. Hemler, M. E. et al. Glycoproteins of 210,000 and 130,000 m.w. on activated T cells: cell distribution and antigenic relation to components on resting cells and T cell lines. J. Immunol. 132, 3011–3018 (1984).

    CAS  PubMed  Google Scholar 

  53. Andrew, D. et al. KIM185, a monoclonal antibody to CD18 which induces a change in the conformation of CD18 and promotes both LFA-1- and CR3-dependent adhesion. Eur. J. Immunol. 23, 2217–2222 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Shinder, V., Amir, R. & Devor, M. Cross-excitation in dorsal root ganglia does not depend on close cell-to-cell apposition. Neuroreport 9, 3997–4000 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Lipp, R. Lobb and S. Raffi, for providing reagents and S. Shwarzbaum for editorial help. Special thanks to S. Feigelson and A. Peled for helpful discussions. Supported in part by the Israel Science Foundation and the Minnerva Foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Alon.

Supplementary information

Web Movie 1.

Digitized Quicktime videos showing characteristic scenes from time-lapse recordings of lymphocytes accumulated on TNF-α-activated HUVEC monolayers overlaid with SDF-1a (100 ng/ml) and subjected to continuous shear stress of 5 dyn/cm2. The time (in min) elapsed from the beginning of the shear application phase is shown at the top. Shown is a magnified image of a 290x200 micron field, selected from full 540x400 micron field (described in Methods). Lymphocytes are numbered from 1–10 to allow monitoring of their position throughout the assay. Arrows point to cells 6 and 8, which are in the process of TEM. Lymphocyte number 7 undergoes TEM at t=2.55 min. The remaining lymphocytes locomote over the surface without transmigrating through the ECs. (MOV 5476 kb)

Web Movie 2.

Digitized Quicktime videos showing characteristic scenes from timelapse recordings of lymphocytes accumulated on TNF-α-activated HUVEC monolayers overlaid with SDF-1α (100 ng/ml) and subjected to shear-free conditions. The time (in min) elapsed from the beginning of the shear application phase is shown at the top. For further details refer to the legend of Web Movie 1. No lymphocyte TEM occurs under these experimental conditions. (MOV 5306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat Immunol 2, 515–522 (2001). https://doi.org/10.1038/88710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing