Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the histone deacetylase SIRT2

Abstract

Sir2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters, and has a critical role in the determination of life span in yeast and Caenorhabditis elegans. The 1.7 Å crystal structure of the 323 amino acid catalytic core of human SIRT2, a homolog of yeast Sir2, reveals an NAD-binding domain, which is a variant of the Rossmann fold, and a smaller domain composed of a helical module and a zinc-binding module. A conserved large groove at the interface of the two domains is the likely site of catalysis based on mutagenesis. Intersecting this large groove, there is a pocket formed by the helical module. The pocket is lined with hydrophobic residues conserved within each of the five Sir2 classes, suggesting that it is a class-specific protein-binding site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of SIRT2.
Figure 2: Sequence conservation among the Sir2 family of enzymes.
Figure 3: Conservation among Sir2-like enzymes.
Figure 4: Structural comparison between SIRT2 and Sir2-Af1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shore, D., Squire, M. & Nasmyth, K.A. EMBO J. 3, 2817–2823 (1984).

    Article  CAS  Google Scholar 

  2. Ivy, J.M., Klar, A.J. & Hicks, J.B. Mol. Cell Biol. 6, 688–702 (1986).

    Article  CAS  Google Scholar 

  3. Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Cell 63, 751–762 (1990).

    Article  CAS  Google Scholar 

  4. Bryk, M. et al. Genes Dev. 11, 255–269 (1997).

    Article  CAS  Google Scholar 

  5. Smith, J.S. & Boeke, J.D. Genes Dev. 11, 241–254 (1997).

    Article  CAS  Google Scholar 

  6. Moretti, P., Freeman, K., Coodly, L. & Shore, D. Genes Dev. 8, 2257–2269 (1994).

    Article  CAS  Google Scholar 

  7. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S.M. & Grunstein, M. Cell 80, 583–592 (1995).

    Article  CAS  Google Scholar 

  8. Kaeberlein, M., McVey, M. & Guarente, L. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  Google Scholar 

  9. Lin, S.J., Defossez, P.A. & Guarente, L. Science 289, 2126–2128 (2000).

    Article  CAS  Google Scholar 

  10. Tissenbaum, H.A. & Guarente, L. Nature 410, 227–230 (2001).

    Article  CAS  Google Scholar 

  11. Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H. & Moazed, D. Cell 99, 735–745 (1999).

    Article  CAS  Google Scholar 

  12. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Nature 403, 795–800 (2000).

    Article  CAS  Google Scholar 

  13. Landry, J. et al. Proc. Natl. Acad. Sci. USA 97, 5807–5811 (2000).

    Article  CAS  Google Scholar 

  14. Smith, J.S. et al. Proc. Natl. Acad. Sci. USA 97, 6658–6663 (2000).

    Article  CAS  Google Scholar 

  15. Tanner, K.G., Landry, J., Sternglanz, R. & Denu, J.M. Proc. Natl. Acad. Sci. USA 97, 14178–14182 (2000).

    Article  CAS  Google Scholar 

  16. Cheung, P., Allis, C.D. & Sassone-Corsi, P. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  17. Wu, J. & Grunstein, M. Trends Biochem. Sci. 25, 619–623 (2000).

    Article  CAS  Google Scholar 

  18. Finnin, M.S. et al. Nature 401, 188–193 (1999).

    Article  CAS  Google Scholar 

  19. Tanny, J.C. & Moazed, D. Proc. Natl. Acad. Sci. USA 98, 415–420 (2001).

    Article  CAS  Google Scholar 

  20. Brachmann, C.B. et al. Genes Dev. 9, 2888–2902 (1995).

    Article  CAS  Google Scholar 

  21. Frye, R.A. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    Article  CAS  Google Scholar 

  22. Frye, R.A. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).

    Article  CAS  Google Scholar 

  23. Bellamacina, C.R. FASEB J. 10, 1257–1269 (1996).

    Article  CAS  Google Scholar 

  24. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  25. Min, J., Landry, J., Sternglanz, R. & Xu, R.M. Cell 105, 269–279 (2001).

    Article  CAS  Google Scholar 

  26. Prasad, G.S., Sridhar, V., Yamaguchi, M., Hatefi, Y. & Stout, C.D. Nature Struct. Biol. 6, 1126–1131 (1999).

    Article  CAS  Google Scholar 

  27. Cockell, M.M., Perrod, S. & Gasser, S.M. Genetics 154, 1069–1083 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Scheuring, J. & Schramm, V.L. Biochemistry 36, 8215–8223 (1997).

    Article  CAS  Google Scholar 

  29. Cakir, K.-S.C., Muller-Steffner, H. & Schuber, F. Biochem. J. 349, 203–210 (2000).

    Article  Google Scholar 

  30. Carroll, S.F. & Collier, R.J. Methods Enzymol. 235, 631–639 (1994).

    Article  CAS  Google Scholar 

  31. Carroll, S.F. & Collier, R.J. Proc. Natl. Acad. Sci. USA 81, 3307–3311 (1984).

    Article  CAS  Google Scholar 

  32. Douglas, C.M. & Collier, R.J. J. Bacteriol. 169, 4967–4971 (1987).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Colllaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  35. Jones, T.A., Zhou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  37. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  38. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  39. Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V.M. Richon for the gift of the [3H]acetyl-labeled murine erythroleukemia cell-derived histone substrate; H. Erdument-Bromage of the Sloan-Kettering Microchemistry Facility for N-terminal sequence and mass spectroscopic analysis; C. Murray for administrative assistance; and the staff of the Cornell High Energy Synchotron Source MacChess for help with data collection. Supported by the NIH, the Howard Hughes Medical Institute, the Dewitt Wallace Foundation, the Samuel and May Rudin Foundation and the Rochelle Belfer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola P. Pavletich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finnin, M., Donigian, J. & Pavletich, N. Structure of the histone deacetylase SIRT2. Nat Struct Mol Biol 8, 621–625 (2001). https://doi.org/10.1038/89668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing