Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Importance of ICOS–B7RP-1 costimulation in acute and chronic allograft rejection

Abstract

Primary T cell activation requires B7-CD28 and CD40-CD154 costimulation, but effector T cell functions are considered to be largely independent of these costimulatory pathways. Although blockade of costimulation with cytolytic T lymphocyte–associated antigen 4–immunoglobulin (CTLA-4–Ig) or monoclonal antibody (mAb) to CD154 prolongs allograft survival, chronic rejection follows, which suggests that additional key costimulatory pathways are active in vivo. We found that both antibody to inducible costimulator (anti-ICOS) and an ICOS-Ig fusion protein suppressed intragraft T cell activation and cytokine expression and prolonged allograft survival in a manner similar to that in ICOS−/− allograft recipients. The combination of anti-ICOS therapy and cyclosporin A led to permanent engraftment. In addition, ICOS–B7RP-1 costimulation was required for the development of chronic rejection after CD40-CD154 blockade. These data demonstrate a key role for the ICOS–B7RP-1 pathway in acute and chronic rejection and highlight the benefits of targeting this pathway in combination with the use of conventional immunosuppressive agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Up-regulation of ICOS, but not B7RP-1, during acute rejection.
Figure 2: Blockade of ICOS–B7RP-1 costimulation inhibits acute allograft rejection.
Figure 3: Blockade of ICOS–B7RP-1 costimulation preserves graft histology.
Figure 4: Blockade of ICOS–B7RP-1 costimulation blocks intragraft immune activation.
Figure 5: ICOS-dependent chronic rejection after anti-CD154 therapy.
Figure 6: Synergistic effect of CsA therapy and targeting ICOS–B7RP-1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  2. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).

    CAS  PubMed  Google Scholar 

  3. Foy, T. M., Aruffo, A., Bajorath, J., Buhlmann, J. E. & Noelle, R. J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol. 14, 591–617 (1996).

    Article  CAS  Google Scholar 

  4. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  Google Scholar 

  5. Keane-Myers, A. M., Gause, W. C., Finkelman, F. D., Xhou, X. D. & Willskarp, M. B7-CD28/CTLA-4 costimulatory pathways are required for the development of T helper 2-mediated allergic airway responses to inhaled antigens. J. Immunol. 158, 2042–2049 (1997).

    CAS  PubMed  Google Scholar 

  6. Corry, D. B., Reiner, S. L., Linsley, P. S. & Locksley, R. M. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J. Immunol. 153, 4142–4148 (1994).

    CAS  PubMed  Google Scholar 

  7. Abrams, J. R. et al. CTLA-4Ig-mediated blockade of T-cell costimulation inpatients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252 (1999).

    Article  CAS  Google Scholar 

  8. London, C. A., Lodge, M. P. & Abbas, A. K. Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272 (2000).

    Article  CAS  Google Scholar 

  9. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  10. Coyle, A. J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  11. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  12. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  13. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  Google Scholar 

  14. Swallow, M. M., Wallin, J. J. & Sha, W. C. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNF-α. Immunity 11, 423–432 (1999).

    Article  CAS  Google Scholar 

  15. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  16. Coyle, A. J. & Gutierrez-Ramos, J. C. The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T cell function. Nature Immunol. 2, 203–209 (2001).

    Article  CAS  Google Scholar 

  17. Turka, L. A. et al. T-cell activation by the CD28 ligand-B7 is required for cardiac allograft rejection in vivo. Proc. Natl Acad. Sci. USA 89, 11102–11105 (1992).

    Article  CAS  Google Scholar 

  18. Lenschow, D. J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA-4-Ig. Science 257, 789–792 (1992).

    Article  CAS  Google Scholar 

  19. Hancock, W. W. et al. Costimulatory function and expression of CD40 ligand, CD80 & CD86 in vascularized murine cardiac allograft rejection. Proc. Natl Acad. Sci. USA 93, 13967–13972 (1996).

    Article  CAS  Google Scholar 

  20. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  Google Scholar 

  21. Shimizu, K., Schonbeck, U., Mach, F., Libby, P. & Mitchell, R. N. Host CD40 ligand deficiency induces long-term allograft survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis. J. Immunol. 165, 3506–3518 (2000).

    Article  CAS  Google Scholar 

  22. Ensminger, S. M. et al. CD8+ T cells contribute to the development of transplant arteriosclerosis despite CD154 blockade. Transplantation 69, 2609–2612 (2000).

    Article  CAS  Google Scholar 

  23. Hancock, W. W., Gao, W., Faia, K. L. & Csizmadia, V. Chemokines and their receptors in allograft rejection. Curr. Opin. Immunol. 12, 511–516 (2000).

    Article  CAS  Google Scholar 

  24. Sayegh, M. H., Zheng, X. G., Magee, C., Hancock, W. W. & Turka, L. A. Donor antigen is necessary for the prevention of chronic rejection in CTLA-4-Ig-treated murine cardiac allograft recipients. Transplantation. 64, 1646–1650 (1997).

    Article  CAS  Google Scholar 

  25. Hancock, W. W., Buelow, R., Sayegh, M. H. & Turka, L. A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nature Med. 4, 1392–1396 (1998).

    Article  CAS  Google Scholar 

  26. Jones, N. D. et al. CD40-CD40 ligand-independent activation of CD8+ T cells can trigger allograft rejection. J. Immunol. 165, 1111–1118 (2000).

    Article  CAS  Google Scholar 

  27. Hancock, W. et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192, 1515–1519 (2000).

    Article  CAS  Google Scholar 

  28. Hancock, W. W. et al. Donor-derived IP-10 initiates development of acute allograft rejection. J. Exp. Med. 193, 975–980 (2001).

    Article  CAS  Google Scholar 

  29. Hancock, W. W. Molecular basis of chronic rejection. Curr. Opin. Organ Transplant. 4, 3–10 (1999).

    Article  Google Scholar 

  30. McAdam, A. J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  31. Kirk, A. D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 (1999).

    Article  CAS  Google Scholar 

  32. Smiley, S. T., Csizmadia, V., Gao, W., Turka, L. A. & Hancock, W. W. Differential effects of cyclosporine A, methylprednisolone, mycophenolate and rapamycin on CD154 induction and requirement for NFκB: Implications for tolerance induction. Transplantation 70, 415–419 (2000).

    Article  CAS  Google Scholar 

  33. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  34. Gao, W. et al. Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J. Clin. Invest. 105, 35–44 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a National Institutes of Health grant AI40152 (to W. W. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne W. Hancock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkaynak, E., Gao, W., Shemmeri, N. et al. Importance of ICOS–B7RP-1 costimulation in acute and chronic allograft rejection. Nat Immunol 2, 591–596 (2001). https://doi.org/10.1038/89731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing