Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells

Abstract

Cdc42 is a Rho-family GTPase that in yeast is important in establishing polarized bud growth. Here we show that Cdc42 is also essential in establishing and maintaining polarity in epithelial cells. Functional deletion of Cdc42 in Madin–Darby canine kidney (MDCK) cells results in the selective depolarization of basolateral membrane proteins; the polarity of apical proteins remains unaffected. This phenotype does not reflect major alterations in the actin cytoskeleton, but rather results from the selective inhibition of membrane traffic to the basolateral plasma membrane in both the endocytic and the secretory pathways. Thus, Cdc42 plays a critical part in epithelial-cell polarity, by, unexpectedly, regulating the fidelity of membrane transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective loss of basolateral polarity upon expression of dominant-negative Cdc42.
Figure 2: Localization of Cdc42 mutants to the Golgi complex of MDCK cells.
Figure 3: Cdc42 controls the polarized transport of newly synthesized VSV G protein.
Figure 4: Expression of Cdc42 mutants prevents basolateral recycling from endosomes.
Figure 5: Expression of activated Cdc42 causes reorganization of actin, mislocalization of tight junctions and overall cell-shape change.
Figure 6: Expression of activated Cdc42 causes loss of apical and basolateral polarity.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 ( 1996).

    Article  CAS  Google Scholar 

  2. Mellman, I. Molecular sorting of membrane proteins in polarized and nonpolarized cells . Cold Spring Harb. Symp. Quant. Biol. 60, 745–752 (1995).

    Article  CAS  Google Scholar 

  3. Keller, P. & Simons, K. Post-Golgi biosynthetic trafficking . J. Cell. Sci. 110, 3001– 3009 (1997).

    CAS  PubMed  Google Scholar 

  4. Matter, K. & Mellman, I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr. Opin. Cell Biol. 6, 545–554 (1994).

    Article  CAS  Google Scholar 

  5. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells . Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  6. Low, S. H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol. 141, 1503– 1513 (1998).

    Article  CAS  Google Scholar 

  7. Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  Google Scholar 

  8. Herskowitz, I., Park, H. O., Sanders, S., Valtz, N. & Peter, M. Programming of cell polarity in budding yeast by endogenous and exogenous signals. Cold Spring Harb. Symp. Quant. Biol. 60, 717–727 (1995).

    Article  CAS  Google Scholar 

  9. Finger, F. P. & Novick, P. Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol. 142, 609 –612 (1998).

    Article  CAS  Google Scholar 

  10. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279 , 509–514 (1998).

    Article  CAS  Google Scholar 

  11. Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 ( 1996).

    Article  CAS  Google Scholar 

  12. Olson, M. F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272 (1995).

    Article  CAS  Google Scholar 

  13. Coso, O. A. et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81 , 1137–1146 (1995).

    Article  CAS  Google Scholar 

  14. Chen, L. M., Hobbie, S. & Galan, J. E. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274, 2115 –2118 (1996).

    Article  CAS  Google Scholar 

  15. Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).

    Article  CAS  Google Scholar 

  16. Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  Google Scholar 

  17. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  18. Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J. & Parise, L. V. Cdc42 and rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390, 632–636 (1997).

    Article  CAS  Google Scholar 

  19. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by rho, rac, and cdc42. Neuron 19, 625–634 ( 1997).

    Article  CAS  Google Scholar 

  20. Eaton, S., Auvinen, P., Luo, L., Jan, Y. N. & Simons, K. CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell Biol. 131, 151-164 (1995).

    Article  CAS  Google Scholar 

  21. Braga, V.M., Machesky, L.M., Hall, A. & Hotchin, N.A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol. 137, 1421– 1431 (1997).

    Article  CAS  Google Scholar 

  22. Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H. & Takai, Y. Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol. 139, 1047–1059 (1997).

    Article  CAS  Google Scholar 

  23. Jou, T.-S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  Google Scholar 

  24. Jou, T.-S. & Nelson, W. J. Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithalial (MDCK) cell polarity. J. Cell Biol. 142, 85– 100 (1998).

    Article  CAS  Google Scholar 

  25. Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA 92, 5027 –5031 (1995).

    Article  CAS  Google Scholar 

  26. Erickson, J. W., Zhang, C. J., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  Google Scholar 

  27. Bollag, G. & McCormick, F. Regulators and effectors of ras proteins. Annu. Rev. Cell Biol. 7, 601– 632 (1991).

    Article  CAS  Google Scholar 

  28. Balcarova, S. J., Pfeiffer, S. E., Fuller, S. D. & Simons, K. Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. EMBO J. 3, 2687 –2694 (1984).

    Article  Google Scholar 

  29. Tapon, N. & Hall, A. Rho, rac and cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92 (1997 ).

    Article  CAS  Google Scholar 

  30. Fuller S., von Bonsdorff, C. H. & Simons, K. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK . Cell 38, 65–77 (1984).

    Article  CAS  Google Scholar 

  31. Scalesm, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 ( 1997).

    Article  Google Scholar 

  32. Doms, R. W., Keller, D. S., Helenius, A. & Balch, W. E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 105, 1957–1969 (1987).

    Article  CAS  Google Scholar 

  33. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 ( 1997).

    Article  CAS  Google Scholar 

  34. Dematteis, M. A. & Morrow, J. S. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10, 542–549 (1998).

    Article  CAS  Google Scholar 

  35. McCallum, S. J., Erickson, J. W. & Cerione, R. A. Characterization of the association of the actin-binding protein, IQGAP, and activated Cdc42 with Golgi membranes. J. Biol. Chem. 273, 22537–22544 ( 1998).

    Article  CAS  Google Scholar 

  36. Anderson, J. M., Stevenson, B. R., Jesaitis, L. A., Goodenough, D. A. & Mooseker, M. S. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J. Cell Biol. 106, 1141–1149 (1988).

    Article  CAS  Google Scholar 

  37. Jasmin, B. J., Cartaud, J., Bornens, M. & Changeux, J. P. Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after denervation. Proc. Natl Acad. Sci. USA 86 , 7218–7222 (1989).

    Article  CAS  Google Scholar 

  38. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509– 1526 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Mellman lab for valuable advice and suggestions during this work; members of the Hall lab (especially N. Lamarche) and V. Braga for their help and generosity in developing the microinjection technique; Y. Barral, B. Winckler, H. Fölsch and R. Collins for critical reading of the manuscript; and K. Matlin for supplying critical reagents. R.K. was supported in part by an award from Boehringer-Ingelheim Fonds. This work was supported by the NIH and is dedicated to the memory of Thomas Kreis.

Correspondence and requests for materials should be addressed to I.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Mellman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol 1, 8–13 (1999). https://doi.org/10.1038/8977

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing