Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR

Abstract

Unlike B cells, T cells lack the capacity to improve the affinity of their antigen receptors by somatic mutation. It is, therefore, believed that optimization of cellular immunity is mediated almost exclusively through selective expansion of T cells bearing receptors with the highest affinity for antigen. We show here that T cell responsiveness to peptide (termed “functional avidity”) increased>50-fold during the early stages of viral infection. This indicated that T cells, like B cells, undergo extensive functional maturation in vivo. However, in contrast to B cells, maturation of the T cell response can occur without any appreciable change in T cell receptor affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional avidity maturation of an antigen-specific T cell response.
Figure 2: Anti-CD8 preferentially blocks peptide-specific activation of low-avidity T cells.
Figure 3: Characterization of TCRs on antigen-specific T cells of low or high functional avidity.
Figure 4: Functional avidity maturation in the absence of clonal selection.
Figure 5: Functional avidity does not correlate with the expression of activation and adhesion molecules.
Figure 6: Lck expression is increased in antigen-specific LFA-1hiCD8+ T cells.
Figure 7: Correlation between higher Lck expression and increased IFN-γ production in antigen-specific T cells.

Similar content being viewed by others

References

  1. Eisen, H. N., Sykulev, Y. & Tsomides, T. J. Antigen-specific T-cell receptors and their reactions with complexes formed by peptides with major histocompatibility complex proteins. Adv. Protein Chem. 49, 1–56 (1996).

    Article  CAS  Google Scholar 

  2. Valitutti, S. & Lanzavecchia, A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18, 299–304 (1997).

    Article  CAS  Google Scholar 

  3. Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    Article  CAS  Google Scholar 

  4. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  Google Scholar 

  5. Sykulev, Y., Cohen, R. J. & Eisen, H. N. The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA 92, 11990–11992 (1995).

    Article  CAS  Google Scholar 

  6. Salzmann, M. & Bachmann, M. F. Estimation of maximal affinities between T-cell receptors and MHC/peptide complexes. Mol. Immunol. 35, 65–71 (1998).

    Article  CAS  Google Scholar 

  7. Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  Google Scholar 

  8. Oldstone, M. B. A. et al. Virus and immune responses: lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis. Br. Med. Bull. 41, 70–74 (1985).

    Article  CAS  Google Scholar 

  9. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  10. Slifka, M. K. & Whitton, J. L. Antigen-specific regulation of T cell-mediated cytokine production. Immunity 12, 451–457 (2000).

    Article  CAS  Google Scholar 

  11. Buchmeier, M. J. & Zajac, A. in Persistent Viral Infections (eds Ahmed, R. & Chen, I.) 575–605 (John Wiley & Sons, New York, 1999).

    Google Scholar 

  12. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  13. Whitton, J. L. Lymphocytic choriomeningitis virus CTL. Semin. Virol. 1, 257–262 (1990).

    Google Scholar 

  14. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183, 1917–1921 (1996).

    Article  CAS  Google Scholar 

  15. Bachmann, M. F. et al. Developmental regulation of lck targeting to the CD8 coreceptor controls signaling in naïve and memory T cells. J. Exp. Med. 189, 1521–1530 (1999).

    Article  CAS  Google Scholar 

  16. Nakayama, E. Blocking of effector cell cytotoxicity and T-cell proliferation by Lyt antisera. Immunol. Rev. 68, 117–134 (1982).

    Article  CAS  Google Scholar 

  17. Hollander, N. Effects of anti-Lyt antibodies on T-cell functions. Immunol. Rev. 68, 43–66 (1982).

    Article  CAS  Google Scholar 

  18. von Herrath, M. G., Dockter, J. & Oldstone, M. B. A. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1, 231–242 (1994).

    Article  CAS  Google Scholar 

  19. Slifka, M. K. & Whitton, J. L. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J. Immunol. 164, 208–216 (2000).

    Article  CAS  Google Scholar 

  20. Crawford, F. et al. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  Google Scholar 

  21. Yee, C. et al. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J. Immunol. 162, 2227–2234 (1999).

    CAS  PubMed  Google Scholar 

  22. Nugent, C. T. et al. Characterization of CD8+ T lymphocytes that persist after peripheral tolerance to a self antigen expressed in the pancreas. J. Immunol. 164, 191–200 (2000).

    Article  CAS  Google Scholar 

  23. Daniels, M. A. & Jameson, S. C. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 191, 335–346 (2000).

    Article  CAS  Google Scholar 

  24. Whelan, J. A. et al. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J. Immunol. 163, 4342–4348 (1999).

    CAS  PubMed  Google Scholar 

  25. Reichstetter, S. et al. Distinct T cell interactions with HLA class II tetramers characterize a spectrum of TCR affinities in the human antigen-specific T cell response. J. Immunol. 165, 6994–6998 (2000).

    Article  CAS  Google Scholar 

  26. Sourdive, D. J. et al. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J. Exp. Med. 188, 71–82 (1998).

    Article  CAS  Google Scholar 

  27. Lin, M. Y. & Welsh, R. M. Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J. Exp. Med. 188, 1993–2005 (1998).

    Article  CAS  Google Scholar 

  28. Pircher, H. et al. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  Google Scholar 

  29. Fitzpatrick, D. R. et al. Distinct methylation of the interferon gamma (IFN-γ) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-γ promoter demethylation and mRNA expression are heritable in CD44hiCD8+ T cells. J. Exp. Med. 188, 103–117 (1998).

    Article  CAS  Google Scholar 

  30. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  31. Oehen, S. & Brduscha-Riem, K. Differentiation of naïve CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 161, 5338–5346 (1998).

    CAS  PubMed  Google Scholar 

  32. Ahmed, R. Virus persistence and immune memory. Semin. Virol. 5, 319–324 (1994).

    Article  Google Scholar 

  33. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naïve T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

    Article  CAS  Google Scholar 

  34. Bachmann, M. F., Barner, M. & Kopf, M. CD2 sets quantitative thresholds in T cell activation. J. Exp. Med. 190, 1383–1392 (1999).

    Article  CAS  Google Scholar 

  35. Harrington, L. E. et al. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191, 1241–1246 (2000).

    Article  CAS  Google Scholar 

  36. Slifka, M. K., Pagarigan, R. R. & Whitton, J. L. NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J. Immunol. 164, 2009–2015 (2000).

    Article  CAS  Google Scholar 

  37. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  38. Chan, A. C. & Shaw, A. S. Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr. Opin. Immunol. 8, 394–401 (1996).

    Article  CAS  Google Scholar 

  39. Wange, R. L. & Samelson, L. E. Complex complexes: signaling at the TCR. Immunity 5, 197–205 (1996).

    Article  CAS  Google Scholar 

  40. Horwitz, M. S., Yanagi, Y. & Oldstone, M. B. A. T-cell receptors from virus-specific cytotoxic T lymphocytes recognizing a single immunodominant nine-amino-acid viral epitope show marked diversity. J. Virol. 68, 352–357 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Myung, P. S., Boerthe, N. J. & Koretzky, G. A. Adapter proteins in lymphocyte antigen-receptor signaling. Curr. Opin. Immunol. 12, 256–266 (2000).

    Article  CAS  Google Scholar 

  42. Zhang, W. & Samelson, L. E. The role of membrane-associated adaptors in T cell receptor signalling. Semin. Immunol. 12, 35–41 (2000).

    Article  CAS  Google Scholar 

  43. Kane, L. P., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    Article  CAS  Google Scholar 

  44. Fahmy, T. M., Bieler, J. G., Edidin, M. & Schneck, J. P. Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  45. Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  Google Scholar 

  46. Alexander-Miller, M. A., Leggatt, G. R., Sarin, A. & Berzofsky, J. A. Role of antigen, CD8, and cytotoxic T lymphocyte (CTL) avidity in high dose antigen induction of apoptosis of effector CTL. J. Exp. Med. 184, 485–492 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Lord for secretarial support, R. Pagarigan for technical assistance and C. T. Nugent, R. Soloff and D. Parker for helpful discussions. NP(118–126) and GP(33–41) tetramers were prepared by the NIH Tetramer Core Facility in Atlanta, GA. Supported by NIH grant AI-27028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Slifka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slifka, M., Whitton, J. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat Immunol 2, 711–717 (2001). https://doi.org/10.1038/90650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing