Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen

Abstract

Estrogen is a negative regulator of lymphopoiesis and provides an experimental tool for probing relationships between lymphocyte precursors and stem cells. We found that expression of lymphocyte-associated genes and immunoglobulin (Ig) gene rearrangement occurred before CD45R acquisition. Lymphoid-restricted progenitors that were LinIL-7Rα+c-kitloTdT+ (lineage marker, interleukin receptor 7α+, c-kitlo and terminal deoxynucleotidyl transferase+) were selectively depleted in estrogen-treated mice; within a less differentiated Linc-kithi fraction, functional precursors of B and T, but not myeloid, cells were also selectively depleted. TdT and an Ig heavy chain transgene were detected within a hormone-regulated Linc-kithiSca-1+CD27+Flk-2+IL-7Rα subset of this multipotential progenitor population. Identification of these extremely early lymphoid precursors should facilitate investigation of the molecular mechanisms that control lineage-fate decisions in hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early B lineage differentiation events are initiated before CD45R acquisition.
Figure 2: Estrogen treatment reduced the frequency and mitotic activity of early lymphoid progenitor cells.
Figure 3: Multipotential precursors that were capable of generating B lineage cells were reduced in hormone-treated mice.
Figure 4: Multipotential precursors capable of generating T lineage cells were reduced in hormone-treated mice.
Figure 5: Expression of a μ transgene and TdT initiated within the multipotential progenitor compartment of bone marrow and was ablated in hormone-treated animals.
Figure 6: Coexpression of TdT and a μ chain transgene within an early, hormone-sensitive, Lin compartment.

Similar content being viewed by others

References

  1. Medina, K. L., Smithson, G. M. & Kincade, P. W. Suppression of B lymphopoiesis during normal pregnancy. J. Exp. Med. 178, 1507–1515 (1993).

    Article  CAS  Google Scholar 

  2. Medina, K. L. & Kincade, P. W. Pregnancy-related steroids are potential negative regulators of B lymphopoiesis. Proc. Natl Acad. Sci. USA 91, 5382–5386 (1994).

    Article  CAS  Google Scholar 

  3. Smithson, G. et al. Increased B lymphopoiesis in genetically sex steroid-deficient hypogonadal (hpg) mice. J. Exp. Med. 180, 717–720 (1994).

    Article  CAS  Google Scholar 

  4. Smithson, G., Couse, J. F., Lubahn, D. B., Korach, K. S. & Kincade, P. W. The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis. J. Immunol. 161, 27–34 (1998).

    CAS  PubMed  Google Scholar 

  5. Wilson, C. A., Mrose, S. A. & Thomas, D. W. Enhanced production of B lymphocytes after castration. Blood 85, 1535–1539 (1995).

    CAS  PubMed  Google Scholar 

  6. Olsen, N. J., Watson, M. B., Henderson, G. S. & Kovacs, W. J. Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology 129, 2471–2476 (1991).

    Article  CAS  Google Scholar 

  7. Rijhsinghani, A. G., Thompson, K., Bhatia, S. K. & Waldschmidt, T. J. Estrogen blocks early T cell development in the thymus. Am. J. Reprod. Immunol. 36, 269–277 (1996).

    Article  CAS  Google Scholar 

  8. Li, Y. S., Wasserman, R., Hayakawa, K. & Hardy, R. R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535 (1996).

    Article  CAS  Google Scholar 

  9. Allman, D., Li, J. & Hardy, R. R. Commitment to the B lymphoid lineage occurs before DH-JH recombination. J. Exp. Med. 189, 735–740 (1999).

    Article  CAS  Google Scholar 

  10. Medina, K. L., Strasser, A. & Kincade, P. W. Estrogen influences the differentiation, proliferation and survival of early B lineage precursors. Blood 95, 2059–2067 (2000).

    CAS  PubMed  Google Scholar 

  11. Nutt, S. L., Urbánek, P., Rolink, A. & Busslinger, M. Essential functions of Pax5 (BSAP) in pro-B cell development: Difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 (1997).

    Article  CAS  Google Scholar 

  12. Nutt, S. L., Morrison, A. M., Dörfler, P., Rolink, A., Busslinger, M. Identification of BASP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998).

    Article  CAS  Google Scholar 

  13. Rolink, A. G., Schaniel, C., Busslinger, M., Nutt, S. L. & Melchers, F. Fidelity and infidelity in commitment to B-lymphocyte lineage development. Immunol. Rev. 175, 104–111 (2000).

    Article  CAS  Google Scholar 

  14. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  15. Park, Y.-H. & Osmond, D. G. Dynamics of early B lymphocyte precursor cells in mouse bone marrow: proliferation of cells containing terminal deoxynucleotidyl transferase. Eur. J. Immunol. 19, 2139–2144 (1989).

    Article  CAS  Google Scholar 

  16. Osmond, D. G. B cell development in the bone marrow. Semin. Immunol. 2, 173–180 (1990).

    CAS  PubMed  Google Scholar 

  17. Tudor, K.-S. R. S., Payne, K. J., Yamashita, Y. & Kincade, P. W. Functional assessment of precursors from murine bone marrow suggests a sequence of early B-lineage differentiation events. Immunity 12, 335–345 (2000).

    Article  CAS  Google Scholar 

  18. Kouro, T., Medina, K. L., Oritani, K. & Kincade, P. W. Characteristics of early murine B lymphocyte precursors and their direct sensitivity to negative regulators. Blood 97, 2708–2715 (2001).

    Article  CAS  Google Scholar 

  19. Ogawa, M. et al. Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71 (1991).

    Article  CAS  Google Scholar 

  20. Katayama, N. et al. Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 82, 2353–2360 (1993).

    CAS  PubMed  Google Scholar 

  21. Payne, K. J., Medina, K. L. & Kincade, P. W. Loss of c-kit accompanies B lineage commitment and acquisition of CD45R in most murine B lymphocyte precursors. Blood 94, 713–723 (1999).

    CAS  PubMed  Google Scholar 

  22. Thurmond, T. S. et al. Role of estrogen receptor α in hematopoietic stem cell development and B lymphocyte maturation in the male mouse. Endocrinology 141, 2309–2318 (2000).

    Article  CAS  Google Scholar 

  23. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  24. Spangrude, G. J. & Scollay, R. A simplified method for enrichment of mouse hematopoietic stem cells. Exp. Hematol. 18, 920–926 (1990).

    CAS  PubMed  Google Scholar 

  25. Spangrude, G. J., Brooks, D. M. & Tumas, D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85, 1006–1018 (1995).

    CAS  PubMed  Google Scholar 

  26. Wiesmann, A. et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity 12, 193–199 (2000).

    Article  CAS  Google Scholar 

  27. Zeigler, F. C. et al. Cellular and molecular characterization of the role of the FLK- 2/FLT-3 receptor tyrosine kinase in hematopoietic stem cells. Blood 84, 2422–2430 (1994).

    CAS  PubMed  Google Scholar 

  28. Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044–3050 (1992).

    CAS  PubMed  Google Scholar 

  29. Zinovyeva, M. V., Zijlmans, J. M., Fibbe, W. E., Visser, J. W. & Belyavsky, A. V. Analysis of gene expression in subpopulations of murine hematopoietic stem and progenitor cells. Exp. Hematol. 28, 318–334 (2000).

    Article  CAS  Google Scholar 

  30. Spangrude, G. J. & Scollay, R. A simplified method for enrichment of mouse hematopoietic stem cells. Exp. Hematol. 18, 920–926 (1990).

    CAS  PubMed  Google Scholar 

  31. Ford, A. M. et al. Immunoglobulin heavy-chain and CD3 delta-chain gene enhancers are DNase I-hypersensitive in hemopoietic progenitor cells. Proc. Natl Acad. Sci. USA 89, 3424–3428 (2000).

    Article  Google Scholar 

  32. Thevenin, C., Nutt, S. L. & Busslinger, M. Early function of Pax5 (BSAP) before the pre-B cell receptor stage of B lymphopoiesis. J. Exp. Med. 188, 735–744 (2000).

    Article  Google Scholar 

  33. Orlic, D., Anderson, S., Biesecker, L. G., Sorrentino, B. P. & Bodine, D. M. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc. Natl Acad. Sci. USA 92, 4601–4605 (1995).

    Article  CAS  Google Scholar 

  34. Bruno, S. & Darzynkiewicz, Z. Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells. Cell Prolif. 25, 31–40 (1992).

    Article  CAS  Google Scholar 

  35. Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).

    Article  CAS  Google Scholar 

  36. Wu, L., Antica, M., Johnson, G. R., Scollay, R. & Shortman, K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174, 1617–1627 (1991).

    Article  CAS  Google Scholar 

  37. Wu, L., Li, C.-L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911 (1996).

    Article  CAS  Google Scholar 

  38. Chervenak, R., Dempsey, D., Soloff, R., Wolcott, R. M. & Jennings, S. R. The expression of CD4 by T cell precursors resident in both the thymus and the bone marrow. J. Immunol. 151, 4486–4493 (1993).

    CAS  PubMed  Google Scholar 

  39. Wu, L. et al. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349, 71–74 (1991).

    Article  CAS  Google Scholar 

  40. Rijhsinghani, A. G., Bhatia, S. K., Tygrett, L. T. & Waldschmidt, T. J. Effect of pregnancy on thymic T cell development. Am. J. Reproduct. Immunol. 35, 523–528 (1996).

    Article  CAS  Google Scholar 

  41. Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol. 148, 1604–1612 (1992).

    CAS  PubMed  Google Scholar 

  42. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).

    Article  CAS  Google Scholar 

  43. Anderson, M. K., Hernandez-Hoyos, G., Diamond, R. A. & Rothenberg, E. V. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126, 3131–3148 (1999).

    CAS  PubMed  Google Scholar 

  44. Ford, A. M. et al. Multilineage phenotypes of interleukin-3-dependent progenitor cells. Blood 79, 1962–1971 (1992).

    CAS  PubMed  Google Scholar 

  45. Rolink, A. & Melchers, F. Precursor B cells from pax-5-deficient mice—stem cells for macrophages, granulocytes, osteoclasts, dendritic cells, natural killer cells, thymocytes and T cells. Curr. Top. Microbiol. Immunol. 251, 21–26 (2000).

    CAS  PubMed  Google Scholar 

  46. Rothenberg, E. V. Stepwise specification of lymphocyte developmental lineages. Curr. Opin. Genet. Dev. 10, 370–379 (2000).

    Article  CAS  Google Scholar 

  47. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    Article  CAS  Google Scholar 

  48. Björck, P. & Kincade, P. W. CD19+ pro-B cells can give rise to dendritic cells in vitro. J. Immunol. 161, 5795–5799 (1998).

    PubMed  Google Scholar 

  49. Glimcher, L. H. & Singh, H. Transcription factors in lymphocyte development—T and B cells get together. Cell 96, 13–23 (1999).

    Article  CAS  Google Scholar 

  50. Choi, J. K., Shen, C. P., Radomska, H. S., Eckhardt, L. A. & Kadesch, T. E47 activates the Ig-heavy chain and TdT loci in non–B cells. EMBO J. 15, 5014–5021 (1996).

    Article  CAS  Google Scholar 

  51. Hahm, K. et al. The lymphoid transcription factor LyF-1 is encoded by specific alternately spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14, 7111–7123 (1994).

    Article  CAS  Google Scholar 

  52. Ernst, P., Hahm, K. & Smale, S. T. Both LyF-1 and an Ets protein interact with a critical promoter element in the murine terminal transferase gene. Mol. Cell. Biol. 13, 2982–2992 (2000).

    Article  Google Scholar 

  53. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  54. McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  Google Scholar 

  55. Klug, C. A. et al. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc. Natl Acad. Sci. USA 95, 657–662 (1998).

    Article  CAS  Google Scholar 

  56. Akashi, K., Reya, T., Dalma-Weiszhausz, D. & Weissman, I.L. Lymphoid precursors. Curr. Opin. Immunol. 12, 144–150 (2000).

    Article  CAS  Google Scholar 

  57. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  58. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  59. Li, Y.-S., Hayakawa, K. & Hardy, R. R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178, 951–960 (1993).

    Article  CAS  Google Scholar 

  60. Jenkinson, E. J., Franchi, L. L., Kingston, R. & Owen, J. J. T. Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: application in the production of chimeric thymus rudiments. Eur. J. Immunol. 12, 583–587 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Borghesi for critical review of the manuscript and V. Dandapani for flow cytometry and sorting expertise. Supported by the National Institutes of Health (AI 20069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Kincade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, K., Garrett, K., Thompson, L. et al. Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nat Immunol 2, 718–724 (2001). https://doi.org/10.1038/90659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing