Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease

Abstract

In K/BxN T cell receptor–transgenic mice, spontaneous inflammatory arthritis exhibiting many of the features of human rheumatoid arthritis (RA) is initiated by T cells, but is almost entirely sustained by antibodies to the self-antigen glucose-6-phosphate isomerase (GPI). The relevance of these observations to human disease has been questioned. Here we show that 64% of humans with RA, but not controls, had increased concentrations of anti-GPI immunoglobulin G (IgG) in serum and synovial fluid. In addition, the concentrations of soluble GPI in the sera and synovial fluids of RA patients were also elevated, which led to immune complex formation. Using phage-display methods, we cloned a panel of specific high-affinity human monoclonal anti-GPI IgGs from a patient with RA. These antibodies were highly somatically mutated, which was indicative of an affinity-matured response that was antigen driven. Immunohistochemistry of RA synovium showed high concentrations of GPI on the surface of the synovial lining and on the endothelial cell surface of arterioles; this indicated a mechanism by which antibodies to GPI may precipitate joint disease. The results indicate that the immunological events that lead to the development of autoimmune disease in the K/BxN mouse model may also occur in human RA. This data may be used to develop new strategies for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sera from RA patients contained anti-GPI IgG, as measured by ELISA and immunoblotting.
Figure 2: Human monoclonal IgG-Fab fragments bound specifically to GPI.
Figure 3: Anti-GPI IgGs cloned from a RA patient were highly somatically mutated and exhibited high R:S ratios.
Figure 4: Synovial fluids from patients with active RA contained anti-GPI IgG.
Figure 5: Sera and synovial fluid of RA patients contained significantly increased GPI concentrations.
Figure 6: RA synovial fluid contained free and immune-complexed GPI and anti–GPI IgG.
Figure 7: Distribution of GPI in synovial tissue of patients with active RA.

Similar content being viewed by others

References

  1. Feldmann, M., Brennan, F. M. & Mainin, R. N. Rheumatoid arthritis. Cell 85, 307–310 (1996).

    Article  CAS  Google Scholar 

  2. Hale, L. P. & Haynes, B. F. in Arthritis and Allied Conditions: A textbook of rheumatology (ed. William J. Koopman) 993–1017 (Williams & Wilkins, Philadelphia, PA, 1997).

    Google Scholar 

  3. Holmdahl, R. et al. Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol. Rev. 118, 193–232 (1990).

    Article  CAS  Google Scholar 

  4. Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  Google Scholar 

  5. Korganow, A.-S. et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    Article  CAS  Google Scholar 

  6. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811–822 (1996).

    Article  CAS  Google Scholar 

  7. Chaput, M. et al. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332, 454–455 (1988).

    Article  CAS  Google Scholar 

  8. Faik, P., Walker, J. I. H., Redmill, A. A. M. & Morgan, M. J. Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332, 455–457 (1988).

    Article  Google Scholar 

  9. Watanabe, H., Takehana, K., Date, M., Shinozaki, T. & Raz, A. Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 56, 2960–2963 (1996).

    CAS  PubMed  Google Scholar 

  10. Xu, W., Seiter, K., Feldman, E., Ahmed, T. & Chiao, J. W. The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 87, 4502–4506 (1996).

    CAS  PubMed  Google Scholar 

  11. Gurney, M., Heinrich, S. P., Lee, M. R. & Yin, H. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234, 566–574 (1986).

    Article  CAS  Google Scholar 

  12. Gurney, M. E. et al. Neuroleukin: a lymphokine product of lectin-stimulated T cells. Science 234, 574–581 (1986).

    Article  CAS  Google Scholar 

  13. Rowan, R. M. The assay of phosphoglucose isomerase in human serum. Med. Lab. Sci. 35, 155–166 (1978).

    CAS  PubMed  Google Scholar 

  14. Matsumoto, I., Staub, A., Benoist, C. & Mathis, D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286, 1732–1735 (1999).

    Article  CAS  Google Scholar 

  15. Benner, R., Hijmans, W. & Haajiman, J. J. The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin. Exp. Immunol. 46, 1–7 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Koch, A. E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum . 41, 951–962 (1998).

    Article  CAS  Google Scholar 

  17. Jalkanen, S., Steere, A. C., Fox, R. I. & Butcher, E. C. A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium. Science 233, 556–558 (1986).

    Article  CAS  Google Scholar 

  18. Ferrara, N., Houck, L., Jakeman, L. & Leung, D. W. Molecular and biological properties of the vascular endothelial cell growth factor family of proteins. Endocrinol. Rev. 13, 18–32 (1992).

    Article  CAS  Google Scholar 

  19. Jackson, J. R., Minton, J. A., Ho, M. L., Wei, N. & Winkler, J. D. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1β. J. Rheumatol. 24, 1253–1259 (1997).

    CAS  PubMed  Google Scholar 

  20. Watanabe, H. et al. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J. Biol. Chem. 266, 13442–13448 (1991).

    CAS  PubMed  Google Scholar 

  21. Silletti, S. & Raz, A. Regulation of autocrine motility factor receptor expression in tumor cell locomotion and metastasis. Curr. Top. Microbiol. Immunol. 213, 137–169 (1996).

    CAS  PubMed  Google Scholar 

  22. Oldstone, M. B. A. Molecular mimicry and autoimmune disease. Cell 50, 819–820 (1987).

    Article  CAS  Google Scholar 

  23. Wucherpfenning, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  Google Scholar 

  24. Rocken, M., Urban, J. F. & Shevach, E. M. Infection breaks T-cell tolerance. Nature 359, 79–82 (1992).

    Article  CAS  Google Scholar 

  25. Ohashi, P. S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  Google Scholar 

  26. Caton, A. J., Swartzentruber, J. R., Kuhl, A. L., Carding, S. R. & Stark, S. E. Activation and negative selection of functionally distinct subsets of antibody-secreting cells by influenza hemagglutinin as a viral and a neo-self antigen. J. Exp. Med. 183, 13–26 (1996).

    Article  CAS  Google Scholar 

  27. Goodnow, C. C., Brink, R. & Adams, E. Breakdown of self-tolerance in anergic B lymphocytes. Nature 352, 532–536 (1991).

    Article  CAS  Google Scholar 

  28. Fulcher, D. A. et al. The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J. Exp. Med. 183, 2313–2328 (1996).

    Article  CAS  Google Scholar 

  29. Cooke, M. P. et al. Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells. J. Exp. Med. 179, 425–438 (1994).

    Article  CAS  Google Scholar 

  30. Baumann, M., Jezussek, D., Richter, R. T. & Brand, K. Variants of phosphohexose isomerase in gastrointestinal and mammary carcinoma: isoelectric focusing patterns of normal and tumor tissues derived from surgical specimens of the same. Cancer Res. 48, 2998–3001 (1988).

    CAS  PubMed  Google Scholar 

  31. Gomm, S. A., Keevil, B. G., Thatcher, N., Hasleton, P. S. & Swindell, R. S. The value of tumour markers in lung cancer. Br. J. Cancer 58, 797–804 (1988).

    Article  CAS  Google Scholar 

  32. Filella, X., Molina, R., Jo, J., Mas, E. & Ballesta, A. M. Serum phosphohexose isomerase activities in patients with colorectal cancer. Tumor Biol. 12, 360–367 (1991).

    Article  CAS  Google Scholar 

  33. Burton, D. R. & Woof, J. M. Human antibody effector function. Adv. Immunol. 51, 118–131 (1992).

    Google Scholar 

  34. Maini, R. et al. Infliximab (chimeric anti-tumor necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354, 1932–1939 (1999).

    Article  CAS  Google Scholar 

  35. Barbas, C. F. I., Kang, A. S., Lerner, R. A. & Benkovic, S. J. Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc. Natl Acad. Sci. USA 88, 7978–7982 (1991).

    Article  CAS  Google Scholar 

  36. Burton, D. R. et al. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl Acad. Sci. USA 88, 10134–10137 (1991).

    Article  CAS  Google Scholar 

  37. Phillips, T. L., Talent, J. M. & Gracy, R. W. Isolation of rabbit muscle glucosephosphate isomerase by a single-step substrate elution. Biochim. Biophys. Acta 429, 624–628 (1976).

    Article  Google Scholar 

  38. Barbas, C. F. I. et al. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc. Natl Acad. Sci. USA 89, 10164–10168 (1992).

    Article  CAS  Google Scholar 

  39. Ditzel, H. J. et al. Neutralizing recombinant human antibodies to a conformational V2- and CD4-binding site-sensitive epitope of HIV-1 gp120 isolated by using an epitope-masking procedure. J. Immunol. 154, 893–906 (1995).

    CAS  PubMed  Google Scholar 

  40. Karlsson, R. A., Michaelsson, A. & Mattsson, L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immunol. Meth. 145, 229–240 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Bigford, F.C. Breedveld, C. Colwell Jr., P. Davis, M. Elliott, R. Fox, J. Johansen and M. Lotz for patient samples and A. Raz for the rabbit anti-GPI. Supported in part by NIH grant AI041590 (to H. J. D.) and the Swiss National Science Foundation (M. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik J. Ditzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, M., Burton, D. & Ditzel, H. Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nat Immunol 2, 746–753 (2001). https://doi.org/10.1038/90696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing