Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dual E1A oncolytic adenovirus: targeting tumor heterogeneity with two independent cancer-specific promoter elements, DF3/MUC1 and hTERT

A Corrigendum to this article was published on 14 February 2011

Abstract

The therapeutic utility of oncolytic adenoviruses controlled by a single, tumor-specific regulatory element may be limited by the intra- and inter-tumoral heterogeneity that characterizes many cancers. To address this issue, we constructed an oncolytic adenovirus that uses two distinct tumor-specific promoters (DF3/Muc1 and hTERT) to drive separate E1A expression cassettes, in combination with deletion of the viral E1B region, which confers additional tumor selectivity and increased oncolytic activity. The resultant virus, Adeno-DF3-E1A/hTERT-E1A, induced higher levels of E1A oncoprotein, enhanced oncolysis and an earlier and higher apoptotic index in infected tumor cells than following infection with Adeno-hTERT-E1A, which harbors a single hTERT promoter-driven E1A cassette. In isolated U251 human gliosarcoma cell holoclones (putative cancer stem cells), where DF3/Muc1 expression is substantially enriched and hTERT expression is decreased compared with the parental U251 cell population, E1A production and oncolysis were strongly decreased following infection with Adeno-hTERT-E1A, but not Adeno-DF3-E1A/hTERT-E1A. The strong oncolytic activity of Adeno-DF3-E1A/hTERT-E1A translated into superior anti-tumor activity over Adeno-hTERT-E1A in vivo in a U251 solid tumor xenograft model, where hTERT levels were >90% suppressed and the DF3/Muc1 to hTERT expression ratio was substantially increased compared with cultured U251 cells. The enhanced anti-tumor activity of the dual-targeted Adeno-DF3-E1A/hTERT-E1A was achieved despite premature viral host cell death and decreased production of functional viral progeny, which limited tumor cell spread of the viral infection. These findings highlight the therapeutic benefit of targeting oncolytic viruses to heterogeneous tumor cell populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

4-OH-CPA:

4-hydroxycyclophosphamide

CMV:

cytomegalovirus

CPA:

cyclophosphamide

E1A:

early adenoviral region 1A

FBS:

fetal bovine serum

hTERT:

human telomerase

MOI:

multiplicity of infection

PARP:

poly (ADP-ribose) polymerase

pfu:

plaque forming units

qPCR:

quantitative PCR

RPMI:

Roswell Park Memorial Institute

References

  1. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  2. Jounaidi Y, Doloff JC, Waxman DJ . Conditionally Replicating Adenoviruses for Cancer Treatment. Curr Cancer Drug Targets 2007; 7: 285–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Everts B, van der Poel HG . Replication-selective oncolytic viruses in the treatment of cancer. Cancer gene ther 2005; 12: 141–161.

    Article  CAS  PubMed  Google Scholar 

  4. Nevins JR . Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 1981; 26 (2 Pt 2): 213–220.

    Article  CAS  PubMed  Google Scholar 

  5. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  6. Mo Y, Gan Y, Song S, Johnston J, Xiao X, Wientjes MG et al. Simultaneous targeting of telomeres and telomerase as a cancer therapeutic approach. Cancer Res 2003; 63: 579–585.

    CAS  PubMed  Google Scholar 

  7. Doloff JC, Waxman DJ, Jounaidi Y . hTERT-promoter driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions. Hum Gene Ther 2008; 19: 1383–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wirth T, Kuhnel F, Kubicka S . Telomerase-dependent gene therapy. Curr Mol Med 2005; 5: 243–251.

    Article  CAS  PubMed  Google Scholar 

  9. Cozzi PJ, Wang J, Delprado W, Perkins AC, Allen BJ, Russell PJ et al. MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer. Clin Exp Metastasis 2005; 22: 565–573.

    Article  CAS  PubMed  Google Scholar 

  10. Hinoda Y, Ikematsu Y, Horinochi M, Sato S, Yamamoto K, Nakano T et al. Increased expression of MUC1 in advanced pancreatic cancer. J Gastroenterol 2003; 38: 1162–1166.

    Article  CAS  PubMed  Google Scholar 

  11. Ho SB, Niehans GA, Lyftogt C, Yan PS, Cherwitz DL, Gum ET et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 1993; 53: 641–651.

    CAS  PubMed  Google Scholar 

  12. Nagai S, Takenaka K, Sonobe M, Ogawa E, Wada H, Tanaka F . A novel classification of MUC1 expression is correlated with tumor differentiation and postoperative prognosis in non-small cell lung cancer. J Thorac Oncol 2006; 1: 46–51.

    PubMed  Google Scholar 

  13. Khodarev NN, Pitroda SP, Beckett MA, MacDermed DM, Huang L, Kufe DW et al. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res 2009; 69: 2833–2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Liu D, Chen D, Kharbanda S, Kufe D . Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 2003; 22: 6107–6110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fessler SP, Wotkowicz MT, Mahanta SK, Bamdad C . MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res Treat 2009; 118: 113–124.

    Article  CAS  PubMed  Google Scholar 

  16. Yin L, Li Y, Ren J, Kuwahara H, Kufe D . Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem 2003; 278: 35458–35464.

    Article  CAS  PubMed  Google Scholar 

  17. Engelmann K, Shen H, Finn OJ . MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 2008; 68: 2419–2426.

    Article  CAS  PubMed  Google Scholar 

  18. Hikita ST, Kosik KS, Clegg DO, Bamdad C . MUC1* mediates the growth of human pluripotent stem cells. PLoS One 2008; 3: e3312.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG . PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 2008; 68: 1820–1825.

    Article  CAS  PubMed  Google Scholar 

  20. Jounaidi Y, Chen CS, Veal GJ, Waxman DJ . Enhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydroxylase P450 2B11. Mol Cancer Ther 2006; 5: 541–555.

    Article  CAS  PubMed  Google Scholar 

  21. Jounaidi Y, Waxman DJ . Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Cancer Res 2004; 64: 292–303.

    Article  CAS  PubMed  Google Scholar 

  22. Jounaidi Y, Hecht JE, Waxman DJ . Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res 1998; 58: 4391–4401.

    CAS  PubMed  Google Scholar 

  23. Abe M, Kufe D . Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUC1) gene. Proc Natl Acad Sci U S A 1993; 90: 282–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kovarik A, Lu PJ, Peat N, Morris J, Taylor-Papadimitriou J . Two GC boxes (Sp1 sites) are involved in regulation of the activity of the epithelium-specific MUC1 promoter. J Biol Chem 1996; 271: 18140–18147.

    Article  CAS  PubMed  Google Scholar 

  25. Kovarik A, Peat N, Wilson D, Gendler SJ, Taylor-Papadimitriou J . Analysis of the tissue-specific promoter of the MUC1 gene. J Biol Chem 1993; 268: 9917–9926.

    CAS  PubMed  Google Scholar 

  26. Abou El Hassan MA, van der Meulen-Muileman I, Abbas S, Kruyt FA . Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like programmed cell death. J Virol 2004; 78: 12243–12251.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moreb JS . Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 2008; 3: 237–246.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan A, Chen JJ, Yao PL, Yang PC . The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 2005; 10: 853–865.

    Article  CAS  PubMed  Google Scholar 

  29. Chen CS, Lin JT, Goss KA, He YA, Halpert JR, Waxman DJ . Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol Pharmacol 2004; 65: 1278–1285.

    Article  CAS  PubMed  Google Scholar 

  30. Crompton AM, Kirn DH . From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 2007; 7: 133–139.

    Article  CAS  PubMed  Google Scholar 

  31. Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF . New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 2002; 13: 1737–1750.

    Article  CAS  PubMed  Google Scholar 

  32. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106: 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 2010; 18: 429–434.

    Article  CAS  PubMed  Google Scholar 

  34. Francis P, Fernebro J, Eden P, Laurell A, Rydholm A, Domanski HA et al. Intratumor versus intertumor heterogeneity in gene expression profiles of soft-tissue sarcomas. Genes Chromosomes Cancer 2005; 43: 302–308.

    Article  CAS  PubMed  Google Scholar 

  35. Nagasaki K, Miki Y . Gene expression profiling of breast cancer. Breast Cancer 2006; 13: 2–7.

    Article  PubMed  Google Scholar 

  36. Leedham SJ, Wright NA . Expansion of a mutated clone: from stem cell to tumour. J Clin Pathol 2008; 61: 164–171.

    Article  CAS  PubMed  Google Scholar 

  37. Mimeault M, Hauke R, Mehta PP, Batra SK . Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 2007; 11: 981–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tredan O, Galmarini CM, Patel K, Tannock IF . Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99: 1441–1454.

    Article  CAS  PubMed  Google Scholar 

  39. Walsh MD, Luckie SM, Cummings MC, Antalis TM, McGuckin MA . Heterogeneity of MUC1 expression by human breast carcinoma cell lines in vivo and in vitro. Breast Cancer Res Treat 1999; 58: 255–266.

    Article  CAS  PubMed  Google Scholar 

  40. Yan P, Benhattar J, Seelentag W, Stehle JC, Bosman FT . Immunohistochemical localization of hTERT protein in human tissues. Histochem Cell Biol 2004; 121: 391–397.

    Article  CAS  PubMed  Google Scholar 

  41. Hao X, Sun B, Hu L, Lähdesmäki H, Dunmire V, Feng Y et al. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 2004; 100: 1110–1122.

    Article  CAS  PubMed  Google Scholar 

  42. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M et al. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res 2008; 68: 5533–5539.

    Article  CAS  PubMed  Google Scholar 

  43. Ribacka C, Pesonen S, Hemminki A . Cancer, stem cells, and oncolytic viruses. Ann Med 2008; 40: 496–505.

    Article  CAS  PubMed  Google Scholar 

  44. Hale TK, Braithwaite AW . The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene. J Biol Chem 1999; 274: 23777–23786.

    Article  CAS  PubMed  Google Scholar 

  45. Rao XM, Tseng MT, Zheng X, Dong Y, Jamshidi-Parsian A, Thompson TC et al. E1A-induced apoptosis does not prevent replication of adenoviruses with deletion of E1b in majority of infected cancer cells. Cancer gene ther 2004; 11: 585–593.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Z, Zhou RR, Guan H, Bucana CD, Kleinerman ES . E1A gene therapy inhibits angiogenesis in a Ewing′s sarcoma animal model. Mol Cancer Ther 2003; 2: 1313–1319.

    CAS  PubMed  Google Scholar 

  47. Deissler H, Opalka B . Therapeutic transfer of DNA encoding adenoviral E1A. Recent Pat Anticancer Drug Discov 2007; 2: 1–10.

    Article  CAS  PubMed  Google Scholar 

  48. Liao Y, Yu D, Hung MC . Novel approaches for chemosensitization of breast cancer cells: the E1A story. Adv Exp Med Biol 2007; 608: 144–169.

    Article  CAS  PubMed  Google Scholar 

  49. Martin-Duque P, Sanchez-Prieto R, Romero J, Martinez-Lamparero A, Cebrian-Sagarriga S, Guinea-Viniegra J et al. In vivo radiosensitizing effect of the adenovirus E1A gene in murine and human malignant tumors. Int J Oncol 1999; 15: 1163–1168.

    CAS  PubMed  Google Scholar 

  50. Waxman DJ, Schwartz PS . Harnessing apoptosis for improved anticancer gene therapy. Cancer Res 2003; 63: 8563–8572.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Youssef Jounaidi for guidance in adenovirus design and for many useful suggestions in the initial stages of this project, and Michael Durando for his assistance in generating the holoclones. Supported in part by NIH grant CA49248 (to DJW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Waxman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doloff, J., Waxman, D. Dual E1A oncolytic adenovirus: targeting tumor heterogeneity with two independent cancer-specific promoter elements, DF3/MUC1 and hTERT. Cancer Gene Ther 18, 153–166 (2011). https://doi.org/10.1038/cgt.2010.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.52

Keywords

This article is cited by

Search

Quick links