Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Competitive electroporation formulation for cell therapy

Abstract

Established cell transfection via nucleofection relies on nucleofection buffers with unknown and proprietary makeup due to trade secrecy, inhibiting the possibility of using this otherwise effective method for developing cell therapy. We devised a three-step method for discovering an optimal formulation for the nucleofection of any cell line. These steps include the selection of the best nucleofection program and known buffer type, selection of the best polymer for boosting the transfection efficiency of the best buffer and the comparison with the optimal buffer from an established commercial vendor (Amaxa). Using this three-step selection system, competitive nucleofection formulations were discovered for multiple cell lines, which are equal to or surpass the efficiency of the Amaxa nucleofector solution in a variety of cells and cell lines, including primary adipose stem cells, muscle cells, tumor cells and immune cells. Through the use of scanning electron microscopy, we have revealed morphological changes, which predispose for the ability of these buffers to assist in transferring plasmid DNA into the nuclear space. Our formulation may greatly reduce the cost of electroporation study in laboratory and boosts the potential of application of electroporation-based cell therapies in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pulendran B, Palucka K, Banchereau J . Sensing pathogens and tuning immune responses. Science 2001; 293: 253–256.

    Article  CAS  Google Scholar 

  2. Paczesny S, Choi SW, Ferrara JL . Acute graft-versus-host disease: new treatment strategies. Curr Opin Hematol 2009; 16: 427–436.

    Article  CAS  Google Scholar 

  3. Rappa G, Anzanello F, Alexeyev M, Fodstad O, Lorico A . Gamma-glutamylcysteine synthetase-based selection strategy for gene therapy of chronic granulomatous disease and graft-vs.-host disease. Eur J Haematol 2007; 78: 440–448.

    Article  CAS  Google Scholar 

  4. Lee ST, Jang JH, Cheong JW, Kim JS, Maemg HY, Hahn JS et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002; 118: 1128–1131.

    Article  Google Scholar 

  5. Prata Kde L, Orellana MD, De Santis GC, Kashima S, Fontes AM, Carrara Rde C et al. Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. Exp Hematol 2010; 38: 292–300.e4.

    Article  Google Scholar 

  6. Dupont KM, Sharma K, Stevens HY, Boerckel JD, Garcia AJ, Guldberg RE . Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci USA 2010; 107: 3305–3310.

    Article  CAS  Google Scholar 

  7. Senju S, Hirata S, Motomura Y, Fukuma D, Matsunaga Y, Fukushima S et al. Pluripotent stem cells as source of dendritic cells for immune therapy. Int J Hematol 2010; 91: 392–400.

    Article  Google Scholar 

  8. Katz AJ, Llull R, Hedrick MH, Futrell JW . Emerging approaches to the tissue engineering of fat. Clin Plast Surg 1999; 26: 587–603, viii.

    CAS  PubMed  Google Scholar 

  9. Gimble J, Guilak F . Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362–369.

    Article  Google Scholar 

  10. Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 2003; 14: 59–66.

    Article  CAS  Google Scholar 

  11. Josiah DT, Zhu D, Dreher F, Olson J, McFadden G, Caldas H . Adipose-derived stem cells as therapeutic delivery vehicles of an oncolytic virus for glioblastoma. Mol Ther 2010; 18: 377–385.

    Article  CAS  Google Scholar 

  12. Zhang X, Godbey WT . Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 2006; 58: 515–534.

    Article  CAS  Google Scholar 

  13. Hendrie PC, Russell DW . Gene targeting with viral vectors. Mol Ther 2005; 12: 9–17.

    Article  CAS  Google Scholar 

  14. Schaffer DV, Koerber JT, Lim KI . Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 2008; 10: 169–194.

    Article  CAS  Google Scholar 

  15. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  Google Scholar 

  16. Howitt J, Anderson CW, Freimuth P . Adenovirus interaction with its cellular receptor CAR. Curr Top Microbiol Immunol 2003; 272: 331–364.

    CAS  PubMed  Google Scholar 

  17. Strauss BE, Costanzi-Strauss E . Combating oncogene activation associated with retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency. Braz J Med Biol Res 2007; 40: 601–613.

    Article  CAS  Google Scholar 

  18. Check E . Gene therapy put on hold as third child develops cancer. Nature 2005; 433: 561.

    PubMed  Google Scholar 

  19. Halama A, Kulinski M, Librowski T, Lochynski S . Polymer-based non-viral gene delivery as a concept for the treatment of cancer. Pharmacol Rep 2009; 61: 993–999.

    Article  CAS  Google Scholar 

  20. Narang AS, Thoma L, Miller DD, Mahato RI . Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells. Bioconjug Chem 2005; 16: 156–168.

    Article  CAS  Google Scholar 

  21. Bally MB, Harvie P, Wong FM, Kong S, Wasan EK, Reimer DL . Biological barriers to cellular delivery of lipid-based DNA carriers. Adv Drug Deliv Rev 1999; 38: 291–315.

    Article  CAS  Google Scholar 

  22. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  Google Scholar 

  23. Godbey WT, Wu KK, Mikos AG . Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials 2001; 22: 471–480.

    Article  CAS  Google Scholar 

  24. Subramanian A, Ranganathan P, Diamond SL . Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 1999; 17: 873–877.

    Article  CAS  Google Scholar 

  25. Mir LM . Nucleic acids electrotransfer-based gene therapy (electrogene therapy): past, current, and future. Mol Biotechnol 2009; 43: 167–176.

    Article  CAS  Google Scholar 

  26. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH . Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841–845.

    Article  CAS  Google Scholar 

  27. Mir LM, Banoun H, Paoletti C . Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res 1988; 175: 15–25.

    Article  CAS  Google Scholar 

  28. Cukjati D, Batiuskaite D, Andre F, Miklavcic D, Mir LM . Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 2007; 70: 501–507.

    Article  CAS  Google Scholar 

  29. Kotnik T, Mir LM, Flisar K, Puc M, Miklavcic D . Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permeabilization. Bioelectrochemistry 2001; 54: 83–90.

    Article  CAS  Google Scholar 

  30. Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 2002; 5: 133–140.

    Article  CAS  Google Scholar 

  31. Jacobsen F, Mertens-Rill J, Beller J, Hirsch T, Daigeler A, Langer S et al. Nucleofection: a new method for cutaneous gene transfer? J Biomed Biotechnol 2006; 2006: 26060.

    Article  Google Scholar 

  32. Maasho K, Marusina A, Reynolds NM, Coligan JE, Borrego F . Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system. J Immunol Methods 2004; 284: 133–140.

    Article  CAS  Google Scholar 

  33. Trompeter HI, Weinhold S, Thiel C, Wernet P, Uhrberg M . Rapid and highly efficient gene transfer into natural killer cells by nucleofection. J Immunol Methods 2003; 274: 245–256.

    Article  CAS  Google Scholar 

  34. Leclere PG, Panjwani A, Docherty R, Berry M, Pizzey J, Tonge DA . Effective gene delivery to adult neurons by a modified form of electroporation. J Neurosci Methods 2005; 142: 137–143.

    Article  CAS  Google Scholar 

  35. Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C et al. Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 454–461.

    Article  Google Scholar 

  36. Dubois SG, Floyd EZ, Zvonic S, Kilroy G, Wu X, Carling S et al. Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol Biol 2008; 449: 69–79.

    PubMed  Google Scholar 

  37. Li S . Optimizing electrotransfection of mammalian cells in vitro. In: Freidmann T (ed). Gene Transfer: Delivery and Expression of DNA and RNA: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2006, pp 419–425.

    Google Scholar 

  38. Prabha S, Zhou WZ, Panyam J, Labhasetwar V . Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 2002; 244: 105–115.

    Article  CAS  Google Scholar 

  39. Moore NM, Barbour TR, Sakiyama-Elbert SE . Synthesis and characterization of four-arm poly(ethylene glycol)-based gene delivery vehicles coupled to integrin and DNA-binding peptides. Mol Pharm 2008; 5: 140–150.

    Article  CAS  Google Scholar 

  40. Saxena A, Mozumdar S, Johri AK . Ultra-low sized cross-linked polyvinylpyrrolidone nanoparticles as non-viral vectors for in vivo gene delivery. Biomaterials 2006; 27: 5596–5602.

    Article  CAS  Google Scholar 

  41. Kabanov AV, Batrakova EV, Alakhov VY . Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002; 82: 189–212.

    Article  CAS  Google Scholar 

  42. Hartikka J, Sukhu L, Buchner C, Hazard D, Bozoukova V, Margalith M et al. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 2001; 4: 407–415.

    Article  CAS  Google Scholar 

  43. Kabanov AV, Lemieux P, Vinogradov S, Alakhov V . Pluronic block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 2002; 54: 223–233.

    Article  CAS  Google Scholar 

  44. Stroh T, Erben U, Kuhl AA, Zeitz M, Siegmund B . Combined pulse electroporation—a novel strategy for highly efficient transfection of human and mouse cells. PLoS One 2010; 5: e9488.

    Article  Google Scholar 

  45. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES et al. New non-viral method for gene transfer into primary cells. Methods 2004; 33: 151–163.

    Article  CAS  Google Scholar 

  46. Zaharoff DA, Henshaw JW, Mossop B, Yuan F . Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood) 2008; 233: 94–105.

    Article  CAS  Google Scholar 

  47. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C . Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67: 6304–6313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health grant RO1CA120895 and NIH/NIBIB grant R21EB007208. Authors also are thankful to the assistance in cell culture from Jiemiao Hu and in plasmid DNA preparation by Xueqing Xia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, M., Gimble, J., Yu, G. et al. Competitive electroporation formulation for cell therapy. Cancer Gene Ther 18, 579–586 (2011). https://doi.org/10.1038/cgt.2011.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.27

Keywords

This article is cited by

Search

Quick links