Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting 14-3-3zeta in cancer therapy

Abstract

An effective therapeutic target is imperative for cancer treatment, including gene therapy. 14-3-3zeta, a member of the 14-3-3 protein family, acts as a suppressor of apoptosis and has a central role in tumor genesis and progression. Owing to its wide upregulation in human tumors and its involvement in cancer progression and treatment resistance, 14-3-3zeta is currently undergoing extensive investigation as a novel therapeutic target. In this review, we widely investigate the role of 14-3-3zeta in cancer and suggest a potential therapeutic target for new anticancer interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G et al. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 1992; 17: 498–501.

    Article  CAS  Google Scholar 

  2. Morrison DK . The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 2009; 19: 16–23.

    Article  CAS  Google Scholar 

  3. Lee JA, Park JE, Lee DH, Park SG, Myung PK, Park BC et al. G1 to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1. Oncogene 2008; 27: 1297–1305.

    Article  CAS  Google Scholar 

  4. Dong S, Kang S, Gu TL, Kardar S, Fu H, Lonial S et al. 14-3-3 integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells. Blood 2007; 110: 360–369.

    Article  CAS  Google Scholar 

  5. Obsilova V, Silhan J, Boura E, Teisinger J, Obsil T . 14-3-3 proteins: a family of versatile molecular regulators. Physiol Res 2008; 57 (Suppl 3): S11–S21.

    CAS  PubMed  Google Scholar 

  6. Masters SC, Subramanian RR, Truong A, Yang H, Fujii K, Zhang H et al. Survival-promoting functions of 14-3-3 proteins. Biochem Soc Trans 2002; 30: 360–365.

    Article  CAS  Google Scholar 

  7. Cao WD, Zhang X, Zhang JN, Yang ZJ, Zhen HN, Cheng G et al. Immunocytochemical detection of 14-3-3 in primary nervous system tumors. J Neurooncol 2006; 77: 125–130.

    Article  CAS  Google Scholar 

  8. Nakanishi K, Hashizume S, Kato M, Honjoh T, Setoguchi Y, Yasumoto K . Elevated expression levels of the 14-3-3 family of proteins in lung cancer tissues. Hum Antibodies 1997; 8: 189–194.

    Article  CAS  Google Scholar 

  9. Villaret DB, Wang T, Dillon D, Xu J, Sivam D, Cheever MA et al. Identification of genes overexpressed in head and neck squamous cell carcinoma using a combination of complementary DNA subtraction and microarray analysis. Laryngoscope 2000; 110 (3 Part 1): 374–381.

    Article  CAS  Google Scholar 

  10. Alaiya AA, Al-Mohanna M, Aslam M, Shinwari Z, Al-Mansouri L, Al-Rodayan M et al. Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol 2011; 38: 1047–1057.

    Article  CAS  Google Scholar 

  11. Tzivion G, Gupta VS, Kaplun L, Balan V . 14-3-3 proteins as potential oncogenes. Semin Cancer Biol 2006; 16: 203–213.

    Article  CAS  Google Scholar 

  12. Martin H, Patel Y, Jones D, Howell S, Robinson K, Aitken A . Antibodies against the major brain isoforms of 14-3-3 protein: an antibody specific for the N-acetylated amino-terminus of a protein. Febs Lett 1993; 336: 189.

    Article  CAS  Google Scholar 

  13. Neal CL, Yu D . 14-3-3zeta as a prognostic marker and therapeutic target for cancer. Expert Opin Ther Targets 2010; 14: 1343–1354.

    Article  CAS  Google Scholar 

  14. Neal CL, Yao J, Yang W, Zhou X, Nguyen NT, Lu J et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res 2009; 69: 3425–3432.

    Article  CAS  Google Scholar 

  15. Lin M, Morrison CD, Jones S, Mohamed N, Bacher J, Plass C . Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. Int J Cancer 2009; 125: 603–611.

    Article  CAS  Google Scholar 

  16. Matta A, DeSouza LV, Shukla NK, Gupta SD, Ralhan R, Siu KW . Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2008; 7: 2078–2087.

    Article  CAS  Google Scholar 

  17. Matta A, Bahadur S, Duggal R, Gupta SD, Ralhan R . Over-expression of 14-3-3zeta is an early event in oral cancer. BMC Cancer 2007; 7: 169.

    Article  Google Scholar 

  18. Yang X, Cao W, Lin H, Zhang W, Lin W, Cao L et al. Isoform-specific expression of 14-3-3 proteins in human astrocytoma. J Neurol Sci 2009; 276: 54–59.

    Article  CAS  Google Scholar 

  19. Bajpai U, Sharma R, Kausar T, Dattagupta S, Chattopadhayay TK, Ralhan R . Clinical significance of 14-3-3 zeta in human esophageal cancer. Int J Biol Markers 2008; 23: 231–237.

    Article  CAS  Google Scholar 

  20. Maxwell SA, Cherry EM, Bayless KJ . Akt, 14-3-3zeta, and vimentin mediate a drug-resistant invasive phenotype in diffuse large B-cell lymphoma. Leuk Lymphoma 2011; 52: 849–864.

    Article  CAS  Google Scholar 

  21. Choi JE, Hur W, Jung CK, Piao LS, Lyoo K, Hong SW et al. Silencing of 14-3-3zeta over-expression in hepatocellular carcinoma inhibits tumor growth and enhances chemosensitivity to cis-diammined dichloridoplatium. Cancer Lett 2011; 303: 99–107.

    Article  CAS  Google Scholar 

  22. He Y, Wu X, Liu X, Yan G, Xu C . LC-MS/MS analysis of ovarian cancer metastasis-related proteins using a nude mouse model: 14-3-3 zeta as a candidate biomarker. J Proteome Res 2010; 9: 6180–6190.

    Article  CAS  Google Scholar 

  23. Macha MA, Matta A, Chauhan S, Siu KM, Ralhan R . 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in head and neck cancer cells. BMC Cancer 2010; 10: 655.

    Article  CAS  Google Scholar 

  24. Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B et al. 14-3-3zeta cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009; 16: 195–207.

    Article  CAS  Google Scholar 

  25. Setoguchi Y, Kato M, Shoji M, Honjoh T, Kamei M, Sugitani M et al. Immunocytochemical detection of lung cancer cells with monoclonal antibodies to 14-3-3 proteins. Hum Antibodies Hybridomas 1995; 6: 137–144.

    Article  CAS  Google Scholar 

  26. Bortner JJ, Das A, Umstead TM, Freeman WM, Somiari R, Aliaga C et al. Down-regulation of 14-3-3 isoforms and annexin A5 proteins in lung adenocarcinoma induced by the tobacco-specific nitrosamine NNK in the A/J mouse revealed by proteomic analysis. J Proteome Res 2009; 8: 4050–4061.

    Article  CAS  Google Scholar 

  27. Li Z, Zhao J, Du Y, Park HR, Sun SY, Bernal-Mizrachi L et al. Down-regulation of 14-3-3zeta suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proc Natl Acad Sci USA 2008; 105: 162–167.

    Article  CAS  Google Scholar 

  28. Qi W, Liu X, Qiao D, Martinez JD . Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer 2005; 113: 359–363.

    Article  CAS  Google Scholar 

  29. Jang JS, Cho HY, Lee YJ, Ha WS, Kim HW . The differential proteome profile of stomach cancer: identification of the biomarker candidates. Oncol Res 2004; 14: 491–499.

    Article  CAS  Google Scholar 

  30. Ge F, Lu XP, Zeng HL, He QY, Xiong S, Jin L et al. Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res 2009; 8: 3006–3019.

    Article  CAS  Google Scholar 

  31. Cao L, Cao W, Zhang W, Lin H, Yang X, Zhen H et al. Identification of 14-3-3 protein isoforms in human astrocytoma by immunohistochemistry. Neurosci Lett 2008; 432: 94–99.

    Article  CAS  Google Scholar 

  32. Liu Y, Tian RF, Li YM, Liu WP, Cao L, Yang XL et al. The expression of seven 14-3-3 isoforms in human meningioma. Brain Res 2010; 1336: 98–102.

    Article  CAS  Google Scholar 

  33. Ralhan R, Desouza LV, Matta A, Chandra TS, Ghanny S, Datta GS et al. Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics 2008; 7: 1162–1173.

    Article  CAS  Google Scholar 

  34. Chatterjee D, Goldman M, Braastad CD, Darnowski J, Wyche JH, Pantazis P et al. Reduction of 9-nitrocamptothecin-triggered apoptosis in DU-145 human prostate cancer cells by ectopic expression of 14-3-3zeta. Int J Oncol 2004; 25: 503–509.

    CAS  PubMed  Google Scholar 

  35. Shen J, Person MD, Zhu J, Abbruzzese JL, Li D . Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 2004; 64: 9018–9026.

    Article  CAS  Google Scholar 

  36. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005; 4: 1920–1932.

    Article  CAS  Google Scholar 

  37. Kobayashi R, Deavers M, Patenia R, Rice-Stitt T, Halbe J, Gallardo S et al. 14-3-3 zeta protein secreted by tumor associated monocytes/macrophages from ascites of epithelial ovarian cancer patients. Cancer Immunol Immunother 2009; 58: 247–258.

    Article  CAS  Google Scholar 

  38. Lamba S, Ravichandran V, Major EO . Glial cell type-specific subcellular localization of 14-3-3 zeta: an implication for JCV tropism. Glia 2009; 57: 971–977.

    Article  Google Scholar 

  39. Satoh J, Onoue H, Arima K, Yamamura T . The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein. J Neuropathol Exp Neurol 2005; 64: 858–868.

    Article  CAS  Google Scholar 

  40. Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang H et al. Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res 2007; 67: 7901–7906.

    Article  CAS  Google Scholar 

  41. Niemantsverdriet M, Wagner K, Visser M, Backendorf C . Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene 2008; 27: 1315–1319.

    Article  CAS  Google Scholar 

  42. Huber E, Vlasny D, Jeckel S, Stubenrauch F, Iftner T . Gene profiling of cottontail rabbit papillomavirus-induced carcinomas identifies upregulated genes directly involved in stroma invasion as shown by small interfering RNA-mediated gene silencing. J Virol 2004; 78: 7478–7489.

    Article  CAS  Google Scholar 

  43. Cao W, Yang X, Zhou J, Teng Z, Cao L, Zhang X et al. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis 2010; 15: 230–241.

    Article  CAS  Google Scholar 

  44. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 2004; 23: 1889–1899.

    Article  CAS  Google Scholar 

  45. Sunayama J, Tsuruta F, Masuyama N, Gotoh Y . JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 2005; 170: 295–304.

    Article  CAS  Google Scholar 

  46. Zhou J, Shao Z, Kerkela R, Ichijo H, Muslin AJ, Pombo C et al. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol Cell Biol 2009; 29: 4167–4176.

    Article  CAS  Google Scholar 

  47. Ahmed KM, Fan M, Nantajit D, Cao N, Li JJ . Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene 2008; 27: 6738–6748.

    Article  CAS  Google Scholar 

  48. Mils V, Baldin V, Goubin F, Pinta I, Papin C, Waye M et al. Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene 2000; 19: 1257–1265.

    Article  CAS  Google Scholar 

  49. Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H et al. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 1998; 273: 16305–16310.

    Article  CAS  Google Scholar 

  50. Alvarez D, Callejo M, Shoucri R, Boyer L, Price GB, Zannis-Hadjopoulos M . Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro. Biochemistry 2003; 42: 7205–7215.

    Article  CAS  Google Scholar 

  51. Sehgal BU, DeBiase PJ, Matzno S, Chew TL, Claiborne JN, Hopkinson SB et al. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J Biol Chem 2006; 281: 35487–35498.

    Article  CAS  Google Scholar 

  52. Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BA, Marinkovich MP et al. Beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell 2006; 17: 4925–4935.

    Article  CAS  Google Scholar 

  53. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998; 393: 809–812.

    Article  CAS  Google Scholar 

  54. Gohla A, Bokoch GM . 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 2002; 12: 1704–1710.

    Article  CAS  Google Scholar 

  55. Kligys K, Yao J, Yu D, Jones JC . 14-3-3zeta/tau heterodimers regulate Slingshot activity in migrating keratinocytes. Biochem Biophys Res Commun 2009; 383: 450–454.

    Article  CAS  Google Scholar 

  56. Kim JS, Huang TY, Bokoch GM . Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol Biol Cell 2009; 20: 2650–2660.

    Article  CAS  Google Scholar 

  57. Zhu P, Sang Y, Xu H, Zhao J, Xu R, Sun Y et al. ADAM22 plays an important role in cell adhesion and spreading with the assistance of 14-3-3. Biochem Biophys Res Commun 2005; 331: 938–946.

    Article  CAS  Google Scholar 

  58. Zhu P, Sun Y, Xu R, Sang Y, Zhao J, Liu G et al. The interaction between ADAM 22 and 14-3-3zeta: regulation of cell adhesion and spreading. Biochem Biophys Res Commun 2003; 301: 991–999.

    Article  CAS  Google Scholar 

  59. Tian Q, He XC, Hood L, Li L . Bridging the BMP and Wnt pathways by PI3 kinase/Akt and 14-3-3zeta. Cell Cycle 2005; 4: 215–216.

    Article  CAS  Google Scholar 

  60. Danes CG, Wyszomierski SL, Lu J, Neal CL, Yang W, Yu D . 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res 2008; 68: 1760–1767.

    Article  CAS  Google Scholar 

  61. Roma AA, Goldblum JR, Fazio V, Yang B . Expression of 14-3-3sigma, p16 and p53 proteins in anal squamous intraepithelial neoplasm and squamous cell carcinoma. Int J Clin Exp Pathol 2008; 1: 419–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oksvold MP, Huitfeldt HS, Langdon WY . Identification of 14-3-3zeta as an EGF receptor interacting protein. Febs Lett 2004; 569: 207–210.

    Article  CAS  Google Scholar 

  63. Maxwell SA, Li Z, Jaye D, Ballard S, Ferrell J, Fu H . 14-3-3zeta mediates resistance of diffuse large. J Biol Chem 2009; 284: 22379–22389.

    Article  CAS  Google Scholar 

  64. Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG et al. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood 2004; 104: 1314–1323.

    Article  CAS  Google Scholar 

  65. Chen J, Emara N, Solomides C, Parekh H, Simpkins H . Resistance to platinum-based chemotherapy in lung cancer cell lines. Cancer Chemother Pharmacol 2010; 66: 1103–1111.

    Article  CAS  Google Scholar 

  66. Zang D, Li X, Zhang L . 14-3-3zeta overexpression and abnormal beta-catenin expression are associated with poor differentiation and progression in stage I non-small cell lung cancer. Clin Exp Med 2010; 10: 221–228.

    Article  CAS  Google Scholar 

  67. Yang X, Cao W, Zhou J, Zhang W, Zhang X, Lin W et al. 14-3-3zeta positive expression is associated with a poor prognosis in patients with glioblastoma. Neurosurgery 2011; 68: 932–938.

    Article  Google Scholar 

  68. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  Google Scholar 

  69. Zhang YC, Taylor MM, Samson WK, Phillips MI . Antisense inhibition: oligonucleotides, ribozymes, and siRNAs. Methods Mol Med 2005; 106: 11–34.

    CAS  PubMed  Google Scholar 

  70. Dykxhoorn DM, Lieberman J . Knocking down disease with siRNAs. Cell 2006; 126: 231–235.

    Article  CAS  Google Scholar 

  71. Matta A, DeSouza LV, Ralhan R, Siu KW . Small interfering RNA targeting 14-3-3zeta increases efficacy of chemotherapeutic agents in head and neck cancer cells. Mol Cancer Ther 2010; 9: 2676–2688.

    Article  CAS  Google Scholar 

  72. Debinski W, Tatter SB . Convection-enhanced delivery to achieve widespread distribution of viral vectors: predicting clinical implementation. Curr Opin Mol Ther 2010; 12: 647–653.

    CAS  PubMed  Google Scholar 

  73. Wang B, Yang H, Liu YC, Jelinek T, Zhang L, Ruoslahti E et al. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 1999; 38: 12499–12504.

    Article  CAS  Google Scholar 

  74. Masters SC, Fu H . 14-3-3 proteins mediate an essential anti-apoptotic signal. J Biol Chem 2001; 276: 45193–45200.

    Article  CAS  Google Scholar 

  75. Dong S, Kang S, Lonial S, Khoury HJ, Viallet J, Chen J . Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070. Leukemia 2008; 22: 572–577.

    Article  CAS  Google Scholar 

  76. Zhao J, Du Y, Horton JR, Upadhyay AK, Lou B, Bai Y et al. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Proc Natl Acad Sci USA 2011; 108: 16212–16216.

    Article  CAS  Google Scholar 

  77. Neal CL, Xu J, Li P, Mori S, Yang J, Neal NN et al. Overexpression of 14-3-3zeta in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene; advance online publication, 11 July 2011 [E-pub ahead of print].

Download references

Acknowledgements

Supported by Scientific and Technological Project of ShaanXi Province (No: 2008K09-09) and National Natural Science Foundation of China (No: 81072083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Cao, W., Zhang, L. et al. Targeting 14-3-3zeta in cancer therapy. Cancer Gene Ther 19, 153–159 (2012). https://doi.org/10.1038/cgt.2011.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.85

Keywords

This article is cited by

Search

Quick links