Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Dysfunctions of the Iga system: a common link between intestinal and renal diseases

Abstract

Immunoglobulin A (Iga)-isotype antibodies play an important role in immunity owing to their structure, glycosylation, localization and receptor interactions. Dysfunctions in this system can lead to multiple types of pathology. This review describes the characteristics of Iga and discusses the involvement of abnormalities in the Iga system on the development of celiac disease and Iga nephropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kerr MA . The structure and function of human IgA. Biochem J 1990; 271: 285–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Monteiro RC . Role of IgA and IgA Fc receptors in inflammation. J Clin Immunol 2011; 30: 1–9.

    Google Scholar 

  3. Solomon A . Monoclonal immunoglobulins as biomarkers of cancer. Cancer Markers 1980; 1: 57–87.

    Google Scholar 

  4. Fernandez MI, Pedron T, Tournebize R, Olivo-Marin JC, Sansonetti PJ, Phalipon A . Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells. Immunity 2003; 18: 739–749.

    CAS  PubMed  Google Scholar 

  5. Boehm MK, Woof JM, Kerr MA, Perkins SJ . The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol 1999; 286: 1421–1447.

    CAS  PubMed  Google Scholar 

  6. Mix E, Goertsches R, Zett UK . Immunoglobulins–basic considerations. J Neurol 2006; 53 Suppl 5, V9–V17.

    Google Scholar 

  7. Woof JM, Kerr MA . The function of immunoglobulin A in immunity. J Pathol 2006; 208: 270–282.

    CAS  PubMed  Google Scholar 

  8. Kutteh WH, Prince SJ, Mestecky J . Tissue origins of human polymeric and monomeric IgA. J Immunol 1982; 128: 990–995.

    CAS  PubMed  Google Scholar 

  9. Mestecky J . Immunobiology of IgA. Am J Kidney Dis 1988; 12: 378–383.

    CAS  PubMed  Google Scholar 

  10. Cerutti A, Rescigno M . The biology of intestinal immunoglobulin A responses. Immunity 2008; 28: 740–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T . SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252: 668–674.

    Article  CAS  PubMed  Google Scholar 

  12. Mestecky J, Zikan J, Butler WT . Immunoglobulin M and secretory immunoglobulin A: presence of a common polypeptide chain different from light chains. Science 1971; 171: 1163–1165.

    CAS  PubMed  Google Scholar 

  13. Brandtzaeg P, Prydz H . Direct evidence for an integrated function of J-chain and secretory component in epithelial transport of immunoglobulins. Nature 1984; 311: 71–73.

    CAS  PubMed  Google Scholar 

  14. Monteiro RC, van de Winkel JG . IgA Fc receptors. Annu Rev Immunol 2003; 21: 177–204.

    CAS  PubMed  Google Scholar 

  15. Tomana M, Niedermeier W, Mestecky J, Skvaril F . The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 1976; 13: 325–328.

    CAS  PubMed  Google Scholar 

  16. Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K et al. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 2008; 31: 29–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoo EM, Morrison SL . IgA: an immune glycoprotein. Clin Immunol 2005; 116: 3–10.

    CAS  PubMed  Google Scholar 

  18. Corthesy B . Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol 2007; 178: 27–32.

    CAS  PubMed  Google Scholar 

  19. Fagarasan S . Evolution, development, mechanism and function of IgA in the gut. Curr Opin Immunol 2008; 20: 170–177.

    CAS  PubMed  Google Scholar 

  20. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004; 113: 1296–1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wines BD, Hogarth PM . IgA receptors in health and disease. Tissue Antigens 2006; 68: 103–114.

    CAS  PubMed  Google Scholar 

  22. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P . The immune geography of IgA induction and function. Mucosal Immunol 2008; 1: 11–22.

    CAS  PubMed  Google Scholar 

  23. van Epps DE, Williams RC Jr . Suppression of leukocyte chemotaxis by human IgA myeloma components. J Exp Med 1976; 144: 1227–1242.

    CAS  PubMed  Google Scholar 

  24. van Epps DE, Reed K, Williams RC Jr . Suppression of human PMN bactericidal activity by human IgA paraproteins. Cell Immunol 1978; 36: 363–376.

    CAS  PubMed  Google Scholar 

  25. Wilton JM . Suppression by IgA of IgG-mediated phagocytosis by human polymorphonuclear leucocytes. Clin Exp Immunol 1978; 34: 423–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf HM, Fischer MB, Puhringer H, Samstag A, Vogel E, Eibl MM . Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes. Blood 1994; 83: 1278–1288.

    CAS  PubMed  Google Scholar 

  27. Nikolova EB, Russell MW . Dual function of human IgA antibodies: inhibition of phagocytosis in circulating neutrophils and enhancement of responses in IL-8-stimulated cells. J Leukoc Biol 1995; 57: 875–882.

    CAS  PubMed  Google Scholar 

  28. Wolf HM, Hauber I, Gulle H, Samstag A, Fischer MB, Ahmad RU et al. Anti-inflammatory properties of human serum IgA: induction of IL-1 receptor antagonist and Fc alpha R (CD89)-mediated down-regulation of tumour necrosis factor-alpha (TNF-alpha) and IL-6 in human monocytes. Clin Exp Immunol 1996; 105: 537–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Olas K, Butterweck H, Teschner W, Schwarz HP, Reipert B . Immunomodulatory properties of human serum immunoglobulin A: anti-inflammatory and pro-inflammatory activities in human monocytes and peripheral blood mononuclear cells. Clin Exp Immunol 2005; 140: 478–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 2005; 22: 31–42.

    CAS  PubMed  Google Scholar 

  31. Schaffer FM, Monteiro RC, Volanakis JE, Cooper MD . IgA deficiency. Immunodefic Rev 1991; 3: 15–44.

    CAS  PubMed  Google Scholar 

  32. Kanamaru Y, Arcos-Fajardo M, Moura IC, Tsuge T, Cohen H, Essig M et al. Fc alpha receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcR gamma adaptor. Eur J Immunol 2007; 37: 1116–1128.

    CAS  PubMed  Google Scholar 

  33. van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JG . IgA and the IgA Fc receptor. Trends Immunol 2001; 22: 205–211.

    CAS  PubMed  Google Scholar 

  34. Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 2001; 194: 417–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Otten MA, van Egmond M . The Fc receptor for IgA (FcalphaRI, CD89). Immunol Lett 2004; 92: 23–31.

    CAS  PubMed  Google Scholar 

  36. Herr AB, Ballister ER, Bjorkman PJ . Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 2003; 423: 614–620.

    CAS  PubMed  Google Scholar 

  37. Launay P, Patry C, Lehuen A, Pasquier B, Blank U, Monteiro RC . Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. J Biol Chem 1999; 274: 7216–7225.

    CAS  PubMed  Google Scholar 

  38. Kanamaru Y, Pfirsch S, Aloulou M, Vrtovsnik F, Essig M, Loirat C et al. Inhibitory ITAM signaling by Fc alpha RI-FcR gamma chain controls multiple activating responses and prevents renal inflammation. J Immunol 2008; 180: 2669–2678.

    CAS  PubMed  Google Scholar 

  39. Monteiro RC, Hostoffer RW, Cooper MD, Bonner JR, Gartland GL, Kubagawa H . Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J Clin Invest 1993; 92: 1681–1685.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiamolera M, Launay P, Montenegro V, Rivero MC, Velasco IT, Monteiro RC . Enhanced expression of Fc alpha receptor I on blood phagocytes of patients with gram-negative bacteremia is associated with tyrosine phosphorylation of the FcR-gamma subunit. Shock 2001; 16: 344–348.

    CAS  PubMed  Google Scholar 

  41. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008; 205: 143–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kagnoff MF . Overview and pathogenesis of celiac disease. Gastroenterology 2005; 128: S10–S18.

    CAS  PubMed  Google Scholar 

  43. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997; 3: 797–801.

    CAS  PubMed  Google Scholar 

  44. van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 1998; 161: 1585–1588.

    CAS  PubMed  Google Scholar 

  45. Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P . Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 1995; 37: 766–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Periolo N, Chernavsky AC . Coeliac disease. Autoimmun Rev 2006; 5: 202–208.

    CAS  PubMed  Google Scholar 

  47. Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M . Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000; 119: 996–1006.

    CAS  PubMed  Google Scholar 

  48. Sollid LM, Lundin KE . Diagnosis and treatment of celiac disease. Mucosal Immunol 2009; 2: 3–7.

    CAS  PubMed  Google Scholar 

  49. Salmi TT, Collin P, Jarvinen O, Haimila K, Partanen J, Laurila K et al. Immunoglobulin A autoantibodies against transglutaminase 2 in the small intestinal mucosa predict forthcoming coeliac disease. Aliment Pharmacol Ther 2006; 24: 541–552.

    CAS  PubMed  Google Scholar 

  50. Picarelli A, Maiuri L, Frate A, Greco M, Auricchio S, Londei M . Production of antiendomysial antibodies after in-vitro gliadin challenge of small intestine biopsy samples from patients with coeliac disease. Lancet 1996; 348: 1065–1067.

    CAS  PubMed  Google Scholar 

  51. Korponay-Szabo IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs JB et al. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut 2004; 53: 641–648.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Green PH, Cellier C . Celiac disease. N Engl J Med 2007; 357: 1731–1743.

    CAS  PubMed  Google Scholar 

  53. Berger J, Hinglais N . Les dépôts intercapillaires d'IgA-IgG. J Urol Néphol 1968; 74: 694–695.

    CAS  Google Scholar 

  54. Galla JH . IgA nephropathy. Kidney Int 1995; 47: 377–387.

    CAS  PubMed  Google Scholar 

  55. Berger J, Yaneva H, Nabarra B, Barbanel C . Reccurence of mesangial deposition of IgA after renal transplantation. Kidney Int 1975; 7: 232–241.

    CAS  PubMed  Google Scholar 

  56. Valentijn RM, Radl J, Haaijman JJ, Vermeer BJ, Weening JJ, Kauffmann RH et al. Circulating and mesangial secretory component-binding IgA-1 in primary IgA nephropathy. Kidney Int 1984; 26: 760–766.

    CAS  PubMed  Google Scholar 

  57. Novak J, Julian BA, Tomana M, Mestecky J . IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 2008; 28: 78–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gonzalez-Cabrero J, Egido J, Mampaso F, Rivas MC, Hernando L . Characterization of circulating idiotypes containing immune complexes and their presence in the glomerular mesangium in patients with IgA nephropathy. Clin Exp Immunol 1989; 76: 204–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van den Wall Bake AW, Bruijn JA, Accavitti MA, Crowley-Nowick PA, Schrohenloher RE, Julian BA et al. Shared idiotypes in mesangial deposits in IgA nephropathy are not disease-specific. Kidney Int 1993; 44: 65–74.

    CAS  PubMed  Google Scholar 

  60. Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, Noel LH, Berger J, Lesavre P . Charge and size of mesangial IgA in IgA nephropathy. Kidney Int 1985; 28: 666–671.

    CAS  PubMed  Google Scholar 

  61. Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J et al. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 2004; 15: 622–634.

    CAS  PubMed  Google Scholar 

  62. Moura IC, Arcos-Fajardo M, Gdoura A, Leroy V, Sadaka C, Mahlaoui N et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol 2005; 16: 2667–2676.

    CAS  PubMed  Google Scholar 

  63. Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 2005; 67: 504–13.

    CAS  PubMed  Google Scholar 

  64. Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 2008; 118: 629–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 2001; 59: 1077–1085.

    CAS  PubMed  Google Scholar 

  66. Kokubo T, Hiki Y, Iwase H, Horii A, Tanaka A, Nishikido J et al. Evidence for involvement of IgA1 hinge glycopeptide in the IgA1–IgA1 interaction in IgA nephropathy. J Am Soc Nephrol 1997; 8: 915–919.

    CAS  PubMed  Google Scholar 

  67. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J . Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 1999; 104: 73–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 2009; 119: 1668–1677.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Almogren A, Kerr MA . Irreversible aggregation of the Fc fragment derived from polymeric but not monomeric serum IgA1—implications in IgA-mediated disease. Mol Immunol 2008; 45: 87–94.

    CAS  PubMed  Google Scholar 

  70. Launay P, Grossetete B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L et al. Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease). Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med 2000; 191: 1999–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Monteiro RC, Moura IC, Launay P, Tsuge T, Haddad E, Benhamou M et al. Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends Mol Med 2002; 8: 464.

    CAS  PubMed  Google Scholar 

  72. van den Wall Bake AW, Kirk KA, Gay RE, Switalski LM, Julian BA, Jackson S et al. Binding of serum immunoglobulins to collagens in IgA nephropathy and HIV infection. Kidney Int 1992; 42: 374–382.

    CAS  PubMed  Google Scholar 

  73. Cederholm B, Wieslander J, Bygren P, Heinegard D . Circulating complexes containing IgA and fibronectin in patients with primary IgA nephropathy. Proc Natl Acad Sci USA 1988; 85: 4865–4868.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shinkai Y, Karai M, Osawa G, Sato M, Koshikawa S . Antimouse laminin antibodies in IgA nephropathy and various glomerular diseases. Nephron 1990; 56: 285–296.

    CAS  PubMed  Google Scholar 

  75. Zheng F, Kundu GC, Zhang Z, Ward J, DeMayo F, Mukherjee AB . Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice. Nature Med 1999; 5: 1018–1025.

    CAS  PubMed  Google Scholar 

  76. Coppo R, Chiesa M, Cirina P, Peruzzi L, Amore A . In human IgA nephropathy uteroglobin does not play the role inferred from transgenic mice. Am J Kidney Dis 2002; 40: 495–503.

    CAS  PubMed  Google Scholar 

  77. Collin P, Syrjanen J, Partanen J, Pasternack A, Kaukinen K, Mustonen J . Celiac disease and HLA DQ in patients with IgA nephropathy. Am J Gastroenterol 2002; 97: 2572–2576.

    PubMed  Google Scholar 

  78. Jhaveri KD, D'Agati VD, Pursell R, Serur D . Coeliac sprue-associated membranoproliferative glomerulonephritis (MPGN). Nephrol Dial Transplant 2009; 24: 3545–3548.

    CAS  PubMed  Google Scholar 

  79. Biyikli NK, Gokce I, Cakalagoglu F, Arbak S, Alpay H . The co-existence of membranoproliferative glomerulonephritis type 1 and coeliac disease: a case report. Pediatr Nephrol 2009; 24: 1247–1250.

    PubMed  Google Scholar 

  80. Prasad D, Khara HS, Gupta M, Sterman P . Celiac disease associated membranous nephropathy—a rare cause or coincidence? A case report. Cases J 2009; 2: 7018.

    PubMed  PubMed Central  Google Scholar 

  81. Pasternack A, Collin P, Mustonen J, Reunala T, Rantala I, Laurila K et al. Glomerular IgA deposits in patients with celiac disease. Clin Nephrol 1990; 34: 56–60.

    CAS  PubMed  Google Scholar 

  82. Coppo R, Amore A, Roccatello D . Dietary antigens and primary immunoglobulin A nephropathy. J Am Soc Nephrol 1992; 2: S173–S180.

    CAS  PubMed  Google Scholar 

  83. Fornasieri A, Sinico RA, Maldifassi P, Bernasconi P, Vegni M, D'Amico G . IgA-antigliadin antibodies in IgA mesangial nephropathy (Berger's disease). Br Med J 1987; 295: 78–80.

    CAS  Google Scholar 

  84. Pierucci A, Fofi C, Bartoli B, Simonetti BM, Pecci G, Sabbatella L et al. Antiendomysial antibodies in Berger's disease. Am J Kidney Dis 2002; 39: 1176–1182.

    CAS  PubMed  Google Scholar 

  85. La Villa G, Pantaleo P, Tarquini R, Cirami L, Perfetto F, Mancuso F et al. Multiple immune disorders in unrecognized celiac disease: a case report. World J Gastroenterol 2003; 9: 1377–1380.

    PubMed  Google Scholar 

  86. Coppo R, Roccatello D, Amore A, Quattrocchio G, Molino A, Gianoglio B et al. Effects of a gluten-free diet in primary IgA nephropathy. Clin Nephrol 1990; 33: 72–86.

    CAS  PubMed  Google Scholar 

  87. Kovacs T, Kun L, Schmelczer M, Wagner L, Davin JC, Nagy J . Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability. Am J Nephrol 1996; 16: 500–505.

    CAS  PubMed  Google Scholar 

  88. Rostoker G, Delchier JC, Chaumette MT . Increased intestinal intra-epithelial T lymphocytes in primary glomerulonephritis: a role of oral tolerance breakdown in the pathophysiology of human primary glomerulonephritides? Nephrol Dial Transplant 2001; 16: 513–517.

    CAS  PubMed  Google Scholar 

  89. Smerud HK, Fellstrom B, Hallgren R, Osagie S, Venge P, Kristjansson G . Gluten sensitivity in patients with IgA nephropathy. Nephrol Dial Transplant 2009; 24: 2476–2481.

    CAS  PubMed  Google Scholar 

  90. Amore A, Emancipator SN, Roccatello D, Gianoglio B, Peruzzi L, Porcellini MG, et al. Functional consequences of the binding of gliadin to cultured rat mesangial cells: bridging immunoglobulin A to cells and modulation of eicosanoid synthesis and altered cytokine production. Am J Kidney Dis 1994; 23: 290–301.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato C Monteiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papista, C., Berthelot, L. & Monteiro, R. Dysfunctions of the Iga system: a common link between intestinal and renal diseases. Cell Mol Immunol 8, 126–134 (2011). https://doi.org/10.1038/cmi.2010.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.69

Keywords

This article is cited by

Search

Quick links