Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polymorphisms in the interleukin 3 gene show strong association with susceptibility to Graves’ disease in Chinese population

Abstract

Graves’ disease (GD) is a common organ-specific autoimmune disorder, which is multifactorial and develops in genetically susceptible individuals. We had earlier mapped a susceptibility locus for GD to chromosome 5q31–33 in a linkage study. Here we used tag single-nucleotide polymorphisms (SNPs) to search for genetic variants associated with GD, and examined 19 functional candidate genes in this chromosomal region. We identified 192 polymorphisms by re-sequencing the candidate genes, and selected 51 tagSNPs to genotype in a case–control collection of 1118 south Han Chinese subjects (428 cases and 690 controls). Initial analysis suggested that a non-synonymous SNP rs40401 (P27S) of interleukin 3 (IL3) was associated with GD, and further fine-mapping showed that rs40401, or its perfect proxy SNP rs31480 in the 5′ flanking region of IL3, fully accounted for the association signal at this locus. We replicated significant association of rs40401 with GD in an independent sample collection of 839 north Han Chinese subjects. A combined analysis revealed strong validation of this association (odds ratio (ORcommon)=1.63, combined P (Pcomb)=4 × 10−6 in the Recessive disease model). This study provides convincing evidence that the IL3 gene is a susceptibility locus for GD in the Chinese population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA et al. Serum TSH, T4, and Thyroid Antibodies in the United States Population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002; 87: 489–499.

    Article  CAS  Google Scholar 

  2. Zhang K LY, Fang Z, Luo C, Liu X, Zhang F, Chen G et al. The effect of salt iodization for 10 years on the prevalences of endemic goiter and hyperthyroidism. Chin J Endocrinol Metab 2002; 18: 342–344.

    Google Scholar 

  3. Jin Y, Teng W, Ben S, Xiong X, Zhang J, Xu S et al. Genome-wide scan of Graves’ disease: evidence for linkage on chromosome 5q31 in Chinese Han pedigrees. J Clin Endocrinol Metab 2003; 88: 1798–1803.

    Article  CAS  Google Scholar 

  4. Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K et al. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto's thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet 2001; 10: 1379–1386.

    Article  CAS  Google Scholar 

  5. Akamizu T, Hiratani H, Ikegami S, Rich SS, Bowden DW . Association study of autoimmune thyroid disease at 5q23-q33 in Japanese patients. J Hum Genet 2003; 48: 236–242.

    Article  CAS  Google Scholar 

  6. Hunt PJ, Marshall SE, Weetman AP, Bell JI, Wass JA, Welsh KI . Cytokine gene polymorphisms in autoimmune thyroid disease. J Clin Endocrinol Metab 2000; 85: 1984–1988.

    Article  CAS  Google Scholar 

  7. Hiromatsu Y, Fukutani T, Ichimura M, Mukai T, Kaku H, Nakayama H et al. Interleukin-13 gene polymorphisms confer the susceptibility of Japanese populations to Graves’ disease. J Clin Endocrinol Metab 2005; 90: 296–301.

    Article  CAS  Google Scholar 

  8. Wandstrat A, Wakeland E . The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2001; 2: 802–809.

    Article  CAS  Google Scholar 

  9. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060.

    Article  CAS  Google Scholar 

  10. Yamada R, Tanaka T, Unoki M, Nagai T, Sawada T, Ohnishi Y et al. Association between a single-nucleotide polymorphism in the promoter of the human interleukin-3 gene and rheumatoid arthritis in Japanese patients, and maximum-likelihood estimation of combinatorial effect that two genetic loci have on susceptibility to the disease. Am J Hum Genet 2001; 68: 674–685.

    Article  CAS  Google Scholar 

  11. Park BL, Kim LH, Choi YH, Lee JH, Rhim T, Lee YM et al. Interleukin 3 (IL3) polymorphisms associated with decreased risk of asthma and atopy. J Hum Genet 2004; 49: 517–527.

    Article  CAS  Google Scholar 

  12. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36: 471–475.

    Article  CAS  Google Scholar 

  13. Silverberg MS, Duerr RH, Brant SR, Bromfield G, Datta LW, Jani N et al. Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn's disease. Eur J Hum Genet 2007; 15: 328–335.

    Article  CAS  Google Scholar 

  14. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 2003; 35: 341–348.

    Article  CAS  Google Scholar 

  15. Lohoff M, Ferrick D, Mittrucker HW, Duncan GS, Bischof S, Rollinghoff M et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 1997; 6: 681–689.

    Article  CAS  Google Scholar 

  16. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES . The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000; 52: 595–638.

    CAS  PubMed  Google Scholar 

  17. DeRijk RH, Schaaf M, de Kloet ER . Glucocorticoid receptor variants: clinical implications. J Steroid Biochem Mol Biol 2002; 81: 103–122.

    Article  CAS  Google Scholar 

  18. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  19. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  20. Schweiger A, Stern D, Lohman IC, Baldini M, Martinez FD, Halonen M . Differences in proliferation of the hematopoietic cell line TF-1 and cytokine production by peripheral blood leukocytes induced by 2 naturally occurring forms of human IL-3. J Allergy Clin Immunol 2001; 107: 505–510.

    Article  CAS  Google Scholar 

  21. Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA et al. Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole-genome screening in a data set of 102 multiplex families. Am J Hum Genet 2003; 73: 736–747.

    Article  CAS  Google Scholar 

  22. Taylor JC, Gough SC, Hunt PJ, Brix TH, Chatterjee K, Connell JM et al. A genome-wide screen in 1119 relative pairs with autoimmune thyroid disease. J Clin Endocrinol Metab 2006; 91: 646–653.

    Article  CAS  Google Scholar 

  23. Hawwari A, Burrows J, Vadas MA, Cockerill PN . The human IL-3 locus is regulated cooperatively by two NFAT-dependent enhancers that have distinct tissue-specific activities. J Immunol 2002; 169: 1876–1886.

    Article  CAS  Google Scholar 

  24. Dogan RN, Vasu C, Holterman MJ, Prabhakar BS . Absence of IL-4, and not suppression of the Th2 response, prevents development of experimental autoimmune Graves’ disease. J Immunol 2003; 170: 2195–2204.

    Article  CAS  Google Scholar 

  25. Ebner S, Hofer S, Nguyen VA, Furhapter C, Herold M, Fritsch P et al. A novel role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4 differentiate into dendritic cells that produce less IL-12 and shift Th cell responses toward a Th2 cytokine pattern. J Immunol 2002; 168: 6199–6207.

    Article  CAS  Google Scholar 

  26. Nakkuntod J, Wongsurawat T, Charoenwongse P, Snabboon T, Sridama V, Hirankarn N . No association between an interleukin 4 gene promoter (−589) polymorphism and Graves’ disease in Thai patients. J Med Assoc Thai 2004; 87 (Suppl 2): S123–S128.

    PubMed  Google Scholar 

  27. Yang Y, Lingling S, Ying J, Yushu L, Zhongyan S, Wei H et al. Association study between the IL4, IL13, IRF1 and UGRP1 genes in chromosomal 5q31 region and Chinese Graves’ disease. J Hum Genet 2005; 50: 574–582.

    Article  CAS  Google Scholar 

  28. Shiau MY, Huang CN, Yang TP, Hwang YC, Tsai KJ, Chi CJ et al. Cytokine promoter polymorphisms in Taiwanese patients with Graves’ disease. Clin Biochem 2007; 40: 213–217.

    Article  CAS  Google Scholar 

  29. Chen RH, Chang CT, Wang TY, Chen CC, Tsai CH, Tsai FJ . Lack of association between interleukin-4 gene polymorphisms and autoimmune thyroid diseases amongst Taiwanese Chinese. Endocrine 2007; 32: 170–174.

    Article  CAS  Google Scholar 

  30. Bednarczuk T, Placha G, Jazdzewski K, Kurylowicz A, Kloza M, Makowska U et al. Interleukin-13 gene polymorphisms in patients with Graves’ disease. Clin Endocrinol (Oxf) 2003; 59: 519–525.

    Article  CAS  Google Scholar 

  31. Chong KK, Chiang SW, Wong GW, Tam PO, Ng TK, Hu YJ et al. Association of CTLA-4 and IL-13 gene polymorphisms with Graves’ disease and ophthalmopathy in Chinese children. Invest Ophthalmol Vis Sci 2008; 49: 2409–2415.

    Article  Google Scholar 

  32. Simmonds MJ, Heward JM, Franklyn JA, Gough SC . IL-13 and chromosome 5q31-q33: problems of identifying association within regions of linkage to Graves’ disease. Clin Endocrinol (Oxf) 2005; 63: 695–697.

    Article  CAS  Google Scholar 

  33. Tello-Ruiz MK, Curley C, DelMonte T, Giallourakis C, Kirby A, Miller K et al. Haplotype-based association analysis of 56 functional candidate genes in the IBD6 locus on chromosome 19. Eur J Hum Genet 2006; 14: 780–790.

    Article  CAS  Google Scholar 

  34. Purcell S, Cherny SS, Sham PC . Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  Google Scholar 

  35. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  36. Higgins JP, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Prof Zhu Chen for insightful instruction. This work was supported by the grants from Chinese High-Tech Program (2006AA020706, 2006AA02A406), National Key Project for Basic Research (2004CB518605), Chinese National Natural Science Fund for Distinguished Young Scholars (30625019), Shanghai Science and Technology Committee (06XD14015) and Chinese National Natural Science Fund (30771029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Huang.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, X., Dong, C., Lei, R. et al. Polymorphisms in the interleukin 3 gene show strong association with susceptibility to Graves’ disease in Chinese population. Genes Immun 10, 260–266 (2009). https://doi.org/10.1038/gene.2009.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.3

Keywords

This article is cited by

Search

Quick links