Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Visualization of targeted transduction by engineered lentiviral vectors

Abstract

We have reported a method to target lentiviral vectors to specific cell types. This method requires the incorporation of two distinct molecules on the viral vector surface: one is an antibody that renders the targeting specificity for the engineered vector, and the other is a fusogenic protein that allows the engineered vector to enter the target cell. However, the molecular mechanism that controls the targeted infection needs to be defined. In this report, we tracked the individual lentiviral particles by labeling the virus with the GFP–Vpr fusion protein. We were able to visualize the surface-displayed proteins on a single virion as well as antibody-directed targeting to a desired cell type. We also demonstrated the dynamics of virus fusion with endosomes and monitored endosome-associated transport of viruses in target cells. Our results suggest that the fusion between the engineered lentivirus and endosomes takes place at the early endosome level, and that the release of the viral core into the cytosol at the completion of the virus–endosome fusion is correlated with the endosome maturation process. This imaging study sheds some light on the infection mechanism of the engineered lentivirus and can be beneficial to the design of more efficient gene delivery vectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Daly G, Chernajovsky Y . Recent developments in retroviral-mediated gene transduction. Mol Ther 2000; 2: 423–434.

    Article  CAS  PubMed  Google Scholar 

  2. Mountain A . Gene therapy: the first decade. Trends Biotechnol 2000; 18: 119–128.

    Article  CAS  PubMed  Google Scholar 

  3. Somia N, Verma IM . Gene therapy: trials and tribulations. Nat Rev Genet 2000; 1: 91–99.

    Article  CAS  PubMed  Google Scholar 

  4. Verma IM, Somia N . Gene therapy-promises, problems and prospects. Nature 1997; 389: 239–242.

    Article  CAS  PubMed  Google Scholar 

  5. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 1992; 89: 6580–6584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 1992; 11: 3053–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinberg JB, Matthews TJ, Cullen BR, Malim MH . Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 1991; 174: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  8. Cronin J, Zhang XY, Reiser J . Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang L, Baiely L, Balimore D, Wang P . Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci USA 2006; 103: 11479–11484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gollan TJ, Green MR . Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J Virol 2002; 76: 3558–3563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavillette D, Russell SJ, Cosset FL . Retargeting gene delivery using surface-engineered retroviral vector particles. Curr Opin Biotechnol 2001; 12: 461–466.

    Article  CAS  PubMed  Google Scholar 

  13. Maurice M, Verhoeyen E, Salmon P, Trono D, Russell SJ, Cosset FL . Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 2002; 99: 2342–2350.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen TH, Pages JC, Farge D, Briand P, Weber A . Amphotropic retroviral vectors displaying hepatocyte growth factor-envelope fusion proteins improve transduction efficiency of primary hepatocytes. Hum Gene Ther 1998; 9: 2469–2479.

    CAS  PubMed  Google Scholar 

  15. Sandrin V, Russell SJ, Cosset FL . Targeting retroviral and lentiviral vectors. Curr Top Microbiol Immunol 2003; 281: 137–178.

    CAS  PubMed  Google Scholar 

  16. Somia NV, Zoppe M, Verma IM . Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proc Natl Acad Sci USA 1995; 92: 7570–7574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Desmaris N, Bosch A, Salaun C, Petit C, Prevost M, Tordo N et al. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 2001; 4: 149–156.

    Article  CAS  PubMed  Google Scholar 

  18. Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J . High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998; 72: 8873–8883.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schnierle BS, Stitz J, Bosch V, Nocken F, Merget-Millitzer H, Engelstadter M et al. Pseudotyping of murine leukemia virus with the envelope glycoproteins of HIV generates a retroviral vector with specificity of infection for CD4-expressing cells. Proc Natl Acad Sci USA 1997; 94: 8640–8645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson JL, Hope TJ . Intracellular trafficking of retroviral vectors:obstacles and advances. Gene Therapy 2005; 12: 1667–1678.

    Article  CAS  PubMed  Google Scholar 

  21. Gruenberg J . Membrane traffic in endocytosis: insights from cell-free assays. Nat Rev Mol Cell Biol 2001; 2: 721–730.

    Article  CAS  PubMed  Google Scholar 

  22. Klasse P, Bron R, Marsh M . Mechanisms of enveloped virus entry into animal cells. Adv Drug Deliv Rev 1998; 34: 65–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin K, Helenius A . Transport of incoming influenza-virus nucleocapsids into the nucleus. J Virol 1991; 65: 232–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Apodaka G . Endocytic traffic in polarized epithelial cells: Role of the actin and microtubule cytoskeleton. Traffic 2001; 2: 149–159.

    Article  Google Scholar 

  25. Mallik R, Gross SP . Molecular motors: Strategies to get along. Curr Biol 2004; 14: R971–R982.

    Article  CAS  PubMed  Google Scholar 

  26. Lakadamyali M, Rust MJ, Zhuang X . Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006; 124: 997–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sieczkarski SB, Whittaker GR . Differential requirements of rab5 and rab7 for endocytosis of influenza and other enveloped viruses. Traffic 2003; 4: 333–343.

    Article  CAS  PubMed  Google Scholar 

  28. Vonderheit A, Helenius A . Rab7 associates with early endosomes to mediate sorting and transport of semliki forest virus to late endosomes. PLoS Biol 2005; 3: 1225–1238.

    Article  CAS  Google Scholar 

  29. McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002; 159: 441–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D . Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–872.

    Article  CAS  PubMed  Google Scholar 

  31. Lakadamyali M, Rust MJ, Babcock HP, Zhuang X . Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 2003; 100: 9280–9285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakai T, Ohuchi M, Imai M, Mizuno T, Kawasaki K, Kuroda K et al. Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells. J Virol 2006; 80: 2013–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marsh M, Bolzau E, Helenius A . Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 1983; 32: 931–940.

    Article  CAS  PubMed  Google Scholar 

  34. Bowman EJ, Siebers A, Altendorf K . Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 1988; 85: 7972–7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Urayama AJHG, Sly WS, Banks WA . Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci USA 2004; 101: 12658–12663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rink J, Ghigo E, Kalaidzidis Y, Zerial M . Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122: 735–749.

    Article  CAS  PubMed  Google Scholar 

  37. Stoorvogel W, Strous GJ, Geuze HZ, Oorschot V, Schwartz AL . Late endosomes derive from early endosomes by maturation. Cell 1991; 65: 417–427.

    Article  CAS  PubMed  Google Scholar 

  38. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M . Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 1990; 62: 317–329.

    Article  CAS  PubMed  Google Scholar 

  39. Zerial M, McBride H . Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2: 107–117.

    Article  CAS  PubMed  Google Scholar 

  40. Jahn R, Lang T, Sudhof TC . Membrane fusion. Cell 2003; 122: 519–533.

    Article  Google Scholar 

  41. Melikyan GB, Barnard RJO, Abrahamyan LG, Mothes W, Young JAT . Imaging individual retroviral fusion events: from hemifusion to pore foramation and growth. Proc Natl Acad Sci USA 2005; 102: 8728–8733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun X, Yau VK, Briggs BJ, Whittaker GR . Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 2005; 338: 53–60.

    Article  CAS  PubMed  Google Scholar 

  43. Lu YE, Cassese T, Kielian M . The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J Virol 1999; 73: 4272–4278.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Markosyan RM, Cohen FS, Melikyan GB . Time-resolved imaging of HIV-1 env-mediated lipid and content mixing between a single virion and cell membrane. Mol Biol Cell 2005; 16: 5502–5513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank April Tai and Lili Yang for critical reading of the article, and USC Norris Center Cell and Tissue Imaging Core. This work was supported by a National Institute of Health grant AI068978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Wang.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, KI., Wang, P. Visualization of targeted transduction by engineered lentiviral vectors. Gene Ther 15, 1384–1396 (2008). https://doi.org/10.1038/gt.2008.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.87

Keywords

This article is cited by

Search

Quick links