Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs

Abstract

1H-NMR (nuclear magnetic resonance) imaging is regularly proposed to non-invasively monitor cell therapy protocols. Prior to transplantation, cells must be loaded with an NMR contrast agent (CA). Most studies performed so far make use of superparamagnetic iron oxide particles (SPIOs), mainly for favorable detection sensitivity. However, in the case of labeled cell death, SPIO recapture by inflammatory cells might introduce severe bias. We investigated whether NMR signal changes induced by preloading with SPIOs or the low molecular weight gadolinium (Gd)-DTPA accurately monitored the outcome of transplanted cells in a murine model of acute immunologic rejection. CA-loaded human myoblasts were grafted in the tibialis anterior of C57BL/6 mice. NMR imaging was repeated regularly until 3 months post-transplantation. Label outcome was evaluated by the size of the labeled area and its relative contrast to surrounding tissue. In parallel, immunohistochemistry assessed the presence of human cells. Data analysis revealed that CA-induced signal changes did not strictly reflect the graft status. Gd-DTPA label disappeared rapidly yet with a 2-week delay compared with immunohistochemical evaluation. More problematically, SPIO label was still visible after 3 months, grossly overestimating cell survival (<1 week). SPIOs should be used with extreme caution to evaluate the presence of grafted cells in vivo and could hardly be recommended for the long-term monitoring of cell transplantation protocols.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vilquin JT . Myoblast transplantation: clinical trials and perspectives. Mini-review. Acta Myol 2005; 24: 119–127.

    CAS  PubMed  Google Scholar 

  2. Partridge T . Myoblast transplantation. Neuromuscul Disord 2002; 12 (Suppl 1): S3–S6.

    Article  Google Scholar 

  3. Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006; 65: 371–386.

    Article  CAS  Google Scholar 

  4. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117: 1189–1200.

    Article  Google Scholar 

  5. Strasser H, Marksteiner R, Margreiter E, Pinggera GM, Mitterberger M, Frauscher F et al. Autologous myoblasts and fibroblasts versus collagen for treatment of stress urinary incontinence in women: a randomised controlled trial. Lancet 2007; 369: 2179–2186.

    Article  CAS  Google Scholar 

  6. Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444: 574–579.

    Article  CAS  Google Scholar 

  7. Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 2007; 25: 1025–1034.

    Article  CAS  Google Scholar 

  8. Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16: 563–577.

    Article  CAS  Google Scholar 

  9. Satoh A, Labrecque C, Tremblay JP . Myotubes can be formed within implanted adipose tissue. Transplant Proc 1992; 24: 3017–3019.

    CAS  PubMed  Google Scholar 

  10. Arcila ME, Ameredes BT, DeRosimo JF, Washabaugh CH, Yang J, Johnson PC et al. Mass and functional capacity of regenerating muscle is enhanced by myoblast transfer. J Neurobiol 1997; 33: 185–198.

    Article  CAS  Google Scholar 

  11. DeRosimo JF, Washabaugh CH, Ontell MP, Daood MJ, Watchko JF, Watkins SC et al. Enhancement of adult muscle regeneration by primary myoblast transplantation. Cell Transplant 2000; 9: 369–377.

    Article  CAS  Google Scholar 

  12. Irintchev A, Langer M, Zweyer M, Theisen R, Wernig A . Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol 1997; 500 (Part 3): 775–785.

    Article  CAS  Google Scholar 

  13. Frier M . Leucocyte radiolabelling techniques: practical aspects. Scand J Gastroenterol Suppl 1994; 203: 32–35.

    Article  CAS  Google Scholar 

  14. McAfee JG, Subramanian G, Gagne G, Schneider RF, Zapf-Longo C . 99mTc-HM-PAO for leukocyte labeling––experimental comparison with 111In oxine in dogs. Eur J Nucl Med 1987; 13: 353–357.

    Article  CAS  Google Scholar 

  15. Peters AM, Danpure HJ, Osman S, Hawker RJ, Henderson BL, Hodgson HJ et al. Clinical experience with 99mTc-hexamethylpropylene-amineoxime for labelling leucocytes and imaging inflammation. Lancet 1986; 2: 946–949.

    Article  CAS  Google Scholar 

  16. Bulte JW, Duncan ID, Frank JA . In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 2002; 22: 899–907.

    Article  Google Scholar 

  17. Weissleder R, Elizondo G, Stark DD, Hahn PF, Marfil J, Gonzalez JF et al. The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. AJR Am J Roentgenol 1989; 152: 175–180.

    Article  CAS  Google Scholar 

  18. Yeh TC, Zhang W, Ildstad ST, Ho C . In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 1995; 33: 200–208.

    Article  CAS  Google Scholar 

  19. Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999; 96: 15256–15261.

    Article  CAS  Google Scholar 

  20. Crich SG, Biancone L, Cantaluppi V, Duo D, Esposito G, Russo S et al. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 2004; 51: 938–944.

    Article  CAS  Google Scholar 

  21. Bulte JW, Kraitchman DL . Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004; 17: 484–499.

    Article  CAS  Google Scholar 

  22. Cahill KS, Gaidosh G, Huard J, Silver X, Byrne BJ, Walter GA . Noninvasive monitoring and tracking of muscle stem cell transplants. Transplantation 2004; 78: 1626–1633.

    Article  Google Scholar 

  23. Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F . Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 2002; 16: 394–406.

    Article  Google Scholar 

  24. Terreno E, Geninatti Crich S, Belfiore S, Biancone L, Cabella C, Esposito G et al. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 2006; 55: 491–497.

    Article  CAS  Google Scholar 

  25. Lin SP, Brown JJ . MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging 2007; 25: 884–899.

    Article  Google Scholar 

  26. Oksendal AN, Hals PA . Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging 1993; 3: 157–165.

    Article  CAS  Google Scholar 

  27. Praud C, Vauchez K, Lombes A, Fiszman M, Vilquin JT . Myoblast xenotransplantation as a tool to evaluate the appropriateness of nanoparticular versus cellular trackers. Cell Transplant 2008; 17: 1035–1043.

    Article  CAS  Google Scholar 

  28. Kaufman CL, Williams M, Ryle LM, Smith TL, Tanner M, Ho C . Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation 2003; 76: 1043–1046.

    Article  CAS  Google Scholar 

  29. Walter GA, Cahill KS, Huard J, Feng H, Douglas T, Sweeney HL et al. Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 2004; 51: 273–277.

    Article  Google Scholar 

  30. Skuk D, Caron N, Goulet M, Roy B, Espinosa F, Tremblay JP . Dynamics of the early immune cellular reactions after myogenic cell transplantation. Cell Transplant 2002; 11: 671–681.

    Article  Google Scholar 

  31. Anderson SA, Lee KK, Frank JA . Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 2006; 41: 332–338.

    Article  Google Scholar 

  32. Biancone L, Crich SG, Cantaluppi V, Romanazzi GM, Russo S, Scalabrino E et al. Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed 2007; 20: 40–48.

    Article  Google Scholar 

  33. Giesel FL, Stroick M, Griebe M, Troster H, von der Lieth CW, Requardt M et al. Gadofluorine m uptake in stem cells as a new magnetic resonance imaging tracking method: an in vitro and in vivo study. Invest Radiol 2006; 41: 868–873.

    Article  CAS  Google Scholar 

  34. Granot D, Kunz-Schughart LA, Neeman M . Labeling fibroblasts with biotin-BSA-GdDTPA-FAM for tracking of tumor-associated stroma by fluorescence and MR imaging. Magn Reson Med 2005; 54: 789–797.

    Article  CAS  Google Scholar 

  35. Shyu WC, Chen CP, Lin SZ, Lee YJ, Li H . Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke 2007; 38: 367–374.

    Article  CAS  Google Scholar 

  36. Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y et al. Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 2005; 16: 995–999.

    Article  CAS  Google Scholar 

  37. Terrovitis J, Stuber M, Youssef A, Preece S, Leppo M, Kizana E et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 2008; 117: 1555–1562.

    Article  Google Scholar 

  38. Pintaske J, Muller-Bierl B, Schick F . Geometry and extension of signal voids in MR images induced by aggregations of magnetically labelled cells. Phys Med Biol 2006; 51: 4707–4718.

    Article  CAS  Google Scholar 

  39. Paturneau-Jouas M, Parzy E, Vidal G, Carlier PG, Wary C, Vilquin JT et al. Electrotransfer at MR imaging: tool for optimization of gene transfer protocols-feasibility study in mice. Radiology 2003; 228: 768–775.

    Article  Google Scholar 

  40. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE . Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007; 242: 647–649.

    Article  Google Scholar 

  41. Mowat P, Franconi F, Chapon C, Lemaire L, Dorat J, Hindre F et al. Evaluating SPIO-labelled cell MR efficiency by three-dimensional quantitative T2* MRI. NMR Biomed 2007; 20: 21–27.

    Article  CAS  Google Scholar 

  42. Bernsen MR, van Tiel ST, Wielopolski PA, Krestin GP . Susceptibility artifacts resulting from paramagnetically labeled cells: understanding what you see. European Society for Magnetic Resonance in Medicine and Biology 23rd Annual Meeing, Magma: Warsaw, Poland, 2006, pp. 275–276.

  43. Stark DD, Bradley Jr WG . Hemorrhage. In: Magnetic Resonance Imaging, third edn, vol 3. Mosby: St Louis, 1999, pp 1329–1345.

  44. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD . PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 2003; 36: 783–790.

    Article  CAS  Google Scholar 

  45. Bouchentouf M, Benabdallah BF, Dumont M, Rousseau J, Jobin L, Tremblay JP . Real-time imaging of myoblast transplantation using the human sodium iodide symporter. Biotechniques 2005; 38: 937–942.

    Article  CAS  Google Scholar 

  46. Zurkiya O, Chan AW, Hu X . MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 2008; 59: 1225–1231.

    Article  CAS  Google Scholar 

  47. Gilad AA, McMahon MT, Walczak P, Winnard Jr PT, Raman V, van Laarhoven HW et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 2007; 25: 217–219.

    Article  CAS  Google Scholar 

  48. Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y . Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. NMR Biomed 2006; 19: 954–967.

    Article  CAS  Google Scholar 

  49. Boesch C . Musculoskeletal spectroscopy. J Magn Reson Imaging 2007; 25: 321–338.

    Article  Google Scholar 

  50. Tofts P . Quantitative MRI of the Brain. Measuring Changes Caused by Disease. John Wiley & Sons 2003, 650 pp.

Download references

Acknowledgements

This study was supported by the Association Française contre les Myopathies (AFM). We thank Dr J Larghero, Mrs B Ternaux, M-N Lacassagne and I Robert for cytometric analyses (Cell Therapy Laboratory, St Louis Hospital, Paris, France). We thank the Guerbet group for kindly providing the SPIOs (Endorem) and Myosix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P G Carlier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baligand, C., Vauchez, K., Fiszman, M. et al. Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs. Gene Ther 16, 734–745 (2009). https://doi.org/10.1038/gt.2009.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.12

Keywords

This article is cited by

Search

Quick links