Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application

Abstract

Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising technique for introducing site-specific sequence alterations without affecting the genomic organization of the target locus. Here, we discuss the significant progress that has been made over the last 5 years in unraveling the mechanisms and reaction parameters underlying ssODN-mediated gene targeting. We will specifically focus on ssODN-mediated gene targeting in murine embryonic stem cells (ESCs) and the impact of the DNA mismatch repair (MMR) system on the targeting process. Implications of novel findings for routine application of ssODN-mediated gene targeting and challenges that need to be overcome for future therapeutic applications are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Thomas KR, Capecchi MR . Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987; 51: 503–512.

    Article  CAS  PubMed  Google Scholar 

  2. Capecchi MR . Altering the genome by homologous recombination. Science 1989; 244: 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  3. Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A . Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 1991; 350: 243–246.

    Article  CAS  PubMed  Google Scholar 

  4. Gu H, Zou YR, Rajewsky K . Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993; 73: 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  5. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  PubMed  Google Scholar 

  6. Olsen PA, Solhaug A, Booth JA, Gelazauskaite M, Krauss S . Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst) 2009; 8: 298–308.

    Article  CAS  Google Scholar 

  7. Campbell CR, Keown W, Lowe L, Kirschling D, Kucherlapati R . Homologous recombination involving small single-stranded oligonucleotides in human cells. New Biol 1989; 1: 223–227.

    CAS  PubMed  Google Scholar 

  8. Aarts M, Dekker M, de Vries S, van der Wal A, te Riele H . Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Res 2006; 34: e147.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dekker M, Brouwers C, te Riele H . Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res 2003; 31: e27.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hu Y, Parekh-Olmedo H, Drury M, Skogen M, Kmiec EB . Reaction parameters of targeted gene repair in mammalian cells. Mol Biotechnol 2005; 29: 197–210.

    Article  CAS  PubMed  Google Scholar 

  11. Igoucheva O, Alexeev V, Yoon K . Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Therapy 2001; 8: 391–399.

    Article  CAS  PubMed  Google Scholar 

  12. Pierce EA, Liu Q, Igoucheva O, Omarrudin R, Ma H, Diamond SL et al. Oligonucleotide-directed single-base DNA alterations in mouse embryonic stem cells. Gene Therapy 2003; 10: 24–33.

    Article  CAS  PubMed  Google Scholar 

  13. Nickerson HD, Colledge WH . A comparison of gene repair strategies in cell culture using a lacZ reporter system. Gene Therapy 2003; 10: 1584–1591.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Muyrers JP, Rientjes J, Stewart AF . Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Biol 2003; 4: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Murphy BR, Moayedpardazi HS, Gewirtz AM, Diamond SL, Pierce EA . Delivery and mechanistic considerations for the production of knock-in mice by single-stranded oligonucleotide gene targeting. Gene Therapy 2007; 14: 304–315.

    Article  CAS  PubMed  Google Scholar 

  16. Aarts M, Te Riele H . Parameters of oligonucleotide-mediated gene modification in mouse ES cells. J Cell Mol Med 2009; 14(6B): 1657–1667.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Parekh-Olmedo H, Ferrara L, Brachman E, Kmiec EB . Gene therapy progress and prospects: targeted gene repair. Gene Therapy 2005; 12: 639–646.

    Article  CAS  PubMed  Google Scholar 

  18. Bertoni C, Rustagi A, Rando TA . Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides. Nucleic Acids Res 2009; 37: 7468–7482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aarts M, te Riele H . Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Res 2010; 38: 6956–6967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ellis HM, Yu D, DiTizio T, Court DL . High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 2001; 98: 6742–6746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costantino N, Court DL . Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci USA 2003; 100: 15748–15753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maresca M, Erler A, Fu J, Friedrich A, Zhang Y, Stewart AF . Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol Biol 2010; 11: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yamamoto T, Moerschell RP, Wakem LP, Komar-Panicucci S, Sherman F . Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 1992; 131: 811–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Parekh-Olmedo H, Engstrom JU, Kmiec EB . The effect of hydroxyurea and trichostatin a on targeted nucleotide exchange in yeast and Mammalian cells. Ann N Y Acad Sci 2003; 1002: 43–55.

    Article  CAS  PubMed  Google Scholar 

  25. Olsen PA, Randol M, Krauss S . Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Therapy 2005; 12: 546–551.

    Article  CAS  PubMed  Google Scholar 

  26. Brachman EE, Kmiec EB . Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks. DNA Repair (Amst) 2005; 4: 445–457.

    Article  CAS  Google Scholar 

  27. Wu XS, Xin L, Yin WX, Shang XY, Lu L, Watt RM et al. Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression. Proc Natl Acad Sci USA 2005; 102: 2508–2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li XT, Costantino N, Lu LY, Liu DP, Watt RM, Cheah KS et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res 2003; 31: 6674–6687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huen MS, Li XT, Lu LY, Watt RM, Liu DP, Huang JD . The involvement of replication in single stranded oligonucleotide-mediated gene repair. Nucleic Acids Res 2006; 34: 6183–6194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olsen PA, Randol M, Luna L, Brown T, Krauss S . Genomic sequence correction by single-stranded DNA oligonucleotides: role of DNA synthesis and chemical modifications of the oligonucleotide ends. J Gene Med 2005; 7: 1534–1544.

    Article  CAS  PubMed  Google Scholar 

  31. Igoucheva O, Alexeev V, Pryce M, Yoon K . Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Res 2003; 31: 2659–2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huen MS, Lu LY, Liu DP, Huang JD . Active transcription promotes single-stranded oligonucleotide mediated gene repair. Biochem Biophys Res Commun 2007; 353: 33–39.

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Rice MC, Drury M, Cheng S, Gamper H, Kmiec EB . Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 2002; 22: 3852–3863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrara L, Kmiec EB . Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cells by inducing DNA damage and activating homologous recombination. Nucleic Acids Res 2004; 32: 5239–5248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferrara L, Parekh-Olmedo H, Kmiec EB . Enhanced oligonucleotide-directed gene targeting in mammalian cells following treatment with DNA damaging agents. Exp Cell Res 2004; 300: 170–179.

    Article  CAS  PubMed  Google Scholar 

  36. Morozov V, Wawrousek EF . Single-strand DNA-mediated targeted mutagenesis of genomic DNA in early mouse embryos is stimulated by Rad51/54 and by Ku70/86 inhibition. Gene Therapy 2008; 15: 468–472.

    Article  CAS  PubMed  Google Scholar 

  37. Igoucheva O, Alexeev V, Scharer O, Yoon K . Involvement of ERCC1/XPF and XPG in oligodeoxynucleotide-directed gene modification. Oligonucleotides 2006; 16: 94–104.

    Article  CAS  PubMed  Google Scholar 

  38. Jiricny J . The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006; 7: 335–346.

    Article  CAS  PubMed  Google Scholar 

  39. Kunz C, Saito Y, Schar P . DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci 2009; 66: 1021–1038.

    Article  CAS  PubMed  Google Scholar 

  40. Kadyrov FA, Dzantiev L, Constantin N, Modrich P . Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126: 297–308.

    Article  CAS  PubMed  Google Scholar 

  41. de Wind N, Dekker M, Berns A, Radman M, te Riele H . Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995; 82: 321–330.

    Article  CAS  PubMed  Google Scholar 

  42. Andersen MS, Sorensen CB, Bolund L, Jensen TG . Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single-stranded DNA oligonucleotides. J Mol Med 2002; 80: 770–781.

    Article  CAS  PubMed  Google Scholar 

  43. Liu L, Parekh-Olmedo H, Kmiec EB . The development and regulation of gene repair. Nat Rev Genet 2003; 4: 679–689.

    Article  CAS  PubMed  Google Scholar 

  44. Cole-Strauss A, Gamper H, Holloman WK, Munoz M, Cheng N, Kmiec EB . Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res 1999; 27: 1323–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maguire KK, Kmiec EB . Multiple roles for MSH2 in the repair of a deletion mutation directed by modified single-stranded oligonucleotides. Gene 2007; 386: 107–114.

    Article  CAS  PubMed  Google Scholar 

  46. Gamper HB, Parekh H, Rice MC, Bruner M, Youkey H, Kmiec EB . The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 2000; 28: 4332–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rice MC, Bruner M, Czymmek K, Kmiec EB . In vitro and in vivo nucleotide exchange directed by chimeric RNA/DNA oligonucleotides in Saccharomyces cerevisae. Mol Microbiol 2001; 40: 857–868.

    Article  CAS  PubMed  Google Scholar 

  48. Dekker M, Brouwers C, Aarts M, van der Torre J, de Vries S, van de Vrugt H et al. Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3. Gene Therapy 2006; 13: 686–694.

    Article  CAS  PubMed  Google Scholar 

  49. de Wind N, Dekker M, Claij N, Jansen L, van Klink Y, Radman M et al. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 1999; 23: 359–362.

    Article  CAS  PubMed  Google Scholar 

  50. Kow YW, Bao G, Reeves JW, Jinks-Robertson S, Crouse GF . Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands. Proc Natl Acad Sci USA 2007; 104: 11352–11357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reitmair AH, Schmits R, Ewel A, Bapat B, Redston M, Mitri A et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet 1995; 11: 64–70.

    Article  CAS  PubMed  Google Scholar 

  52. Edelmann W, Umar A, Yang K, Heyer J, Kucherlapati M, Lia M et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res 2000; 60: 803–807.

    CAS  PubMed  Google Scholar 

  53. Edelmann W, Yang K, Umar A, Heyer J, Lau K, Fan K et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 1997; 91: 467–477.

    Article  CAS  PubMed  Google Scholar 

  54. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell 1996; 85: 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  55. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 1996; 13: 336–342.

    Article  CAS  PubMed  Google Scholar 

  56. Claij N, Te Riele H . Methylation tolerance in mismatch repair proficient cells with low MSH2 protein level. Oncogene 2002; 21: 2873–2879.

    Article  CAS  PubMed  Google Scholar 

  57. Papaioannou I, Disterer P, Owen JS . Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing. J Gene Med 2009; 11: 267–274.

    Article  CAS  PubMed  Google Scholar 

  58. Maguire K, Suzuki T, DiMatteo D, Parekh-Olmedo H, Kmiec E . Genetic correction of splice site mutation in purified and enriched myoblasts isolated from mdx5cv mice. BMC Mol Biol 2009; 10: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Igoucheva O, Alexeev V, Anni H, Rubin E . Oligonucleotide-mediated gene targeting in human hepatocytes: implications of mismatch repair. Oligonucleotides 2008; 18: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McLachlan J, Fernandez S, Helleday T, Bryant HE . Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination. DNA Repair (Amst) 2009; 8: 1424–1433.

    Article  CAS  Google Scholar 

  61. Andrieu-Soler C, Casas M, Faussat AM, Gandolphe C, Doat M, Tempe D et al. Stable transmission of targeted gene modification using single-stranded oligonucleotides with flanking LNAs. Nucleic Acids Res 2005; 33: 3733–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferrara L, Kmiec EB . Targeted gene repair activates Chk1 and Chk2 and stalls replication in corrected cells. DNA Repair (Amst) 2006; 5: 422–431.

    Article  CAS  Google Scholar 

  63. Bonner M, Kmiec EB . DNA breakage associated with targeted gene alteration directed by DNA oligonucleotides. Mutat Res 2009; 669: 85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Engstrom JU, Kmiec EB . Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair. BMC Mol Biol 2007; 8: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Engstrom JU, Suzuki T, Kmiec EB . Regulation of targeted gene repair by intrinsic cellular processes. Bioessays 2009; 31: 159–168.

    Article  CAS  PubMed  Google Scholar 

  66. Andrieu-Soler C, Halhal M, Boatright JH, Padove SA, Nickerson JM, Stodulkova E et al. Single-stranded oligonucleotide-mediated in vivo gene repair in the rd1 retina. Mol Vis 2007; 13: 692–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bertoni C, Morris GE, Rando TA . Strand bias in oligonucleotide-mediated dystrophin gene editing. Hum Mol Genet 2005; 14: 221–233.

    Article  CAS  PubMed  Google Scholar 

  68. Lu IL, Lin CY, Lin SB, Chen ST, Yeh LY, Yang FY et al. Correction/mutation of acid alpha-D-glucosidase gene by modified single-stranded oligonucleotides: in vitro and in vivo studies. Gene Therapy 2003; 10: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  70. Engstrom JU, Kmiec EB . DNA replication, cell cycle progression and the targeted gene repair reaction. Cell Cycle 2008; 7: 1402–1414.

    Article  CAS  PubMed  Google Scholar 

  71. Ferrara L, Engstrom JU, Schwartz T, Parekh-Olmedo H, Kmiec EB . Recovery of cell cycle delay following targeted gene repair by oligonucleotides. DNA Repair (Amst) 2007; 6: 1529–1535.

    Article  CAS  Google Scholar 

  72. Radecke F, Radecke S, Schwarz K . Unmodified oligodeoxynucleotides require single-strandedness to induce targeted repair of a chromosomal EGFP gene. J Gene Med 2004; 6: 1257–1271.

    Article  CAS  PubMed  Google Scholar 

  73. Radecke S, Radecke F, Peter I, Schwarz K . Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus. J Gene Med 2006; 8: 217–228.

    Article  CAS  PubMed  Google Scholar 

  74. Yin WX, Wu XS, Liu G, Li ZH, Watt RM, Huang JD et al. Targeted correction of a chromosomal point mutation by modified single-stranded oligonucleotides in a GFP recovery system. Biochem Biophys Res Commun 2005; 334: 1032–1041.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Z, Zhou ZJ, Liu DP, Huang JD . Single-stranded oligonucleotide-mediated gene repair in mammalian cells has a mechanism distinct from homologous recombination repair. Biochem Biophys Res Commun 2006; 350: 568–573.

    Article  CAS  PubMed  Google Scholar 

  76. Cannavo E, Marra G, Sabates-Bellver J, Menigatti M, Lipkin SM, Fischer F et al. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 2005; 65: 10759–10766.

    Article  CAS  PubMed  Google Scholar 

  77. Wei K, Kucherlapati R, Edelmann W . Mouse models for human DNA mismatch-repair gene defects. Trends Mol Med 2002; 8: 346–353.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory on ssODN-directed gene modification is supported by the Netherlands Genomics Initiative (Grants 050-71-007 and 050-71-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H te Riele.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, M., te Riele, H. Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application. Gene Ther 18, 213–219 (2011). https://doi.org/10.1038/gt.2010.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.161

Keywords

This article is cited by

Search

Quick links