Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genes and networks expressed in perioperative omental adipose tissue are correlated with weight loss from Roux-en-Y gastric bypass

Abstract

Context:

Gastric bypass surgery is the most commonly performed bariatric surgical procedure in the United States. Variable weight loss following this relatively standardized intervention has been reported. To date, a method for reliable profiling of patients who will successfully sustain weight loss for the long term has not been established. In addition, the mechanisms of action in accomplishing major weight loss as well as the explanation for the variable weight loss have not been established.

Objective:

To examine whether gene expression in perioperative omental adipose is associated with gastric bypass-induced weight loss.

Design:

Cross-sectional study of gene expression in perisurgical omental adipose tissues taken/available at the time of operation and total excess weight loss (EWL).

Subjects:

Fifteen overweight individuals who underwent Roux-en-Y gastric bypass (RYGB) surgery at the University of California Davis Medical Center (BMI: 40.6–72.8 kg/m2).

Measurements:

Body weight before and following weight stabilization 18–42 months after surgery. Perioperative omental adipose RNA isolated from 15 subjects was hybridized to Affymetrix HG-U133A chips for 22 283 transcript expression measurements.

Results:

Downstream analysis identified a set of genes whose expression was significantly correlated with RYGB-induced weight loss. The significant individual genes include acyl-coenzyme A oxidase 1 (ACOX1), phosphodiesterase 3A cGMP-inhibited (PDE3A) and protein kinase, AMP-activated, beta 1 non-catalytic subunit (PRKAB1). Specifically, ACOX1 plays a role in fatty acid metabolism. PDE3A is involved in purine metabolism and hormone-stimulated lipolysis. PRKAB1 is involved in adipocytokine signaling pathway. Gene network analysis revealed that pathways for glycerolipid metabolism, breast cancer and apoptosis were significantly correlated with long-term weight loss.

Conclusion:

This study demonstrates that RNA expression profiles from perioperative adipose tissue are associated with weight loss outcome following RYGB surgery. Our data suggest that EWL could be predicted from preoperative samples, which would allow for informed decisions about whether or not to proceed to surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW . Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 1999; 341: 1097–1105.

    Article  CAS  Google Scholar 

  2. Belle SH, Berk PD, Courcoulas AP, Flum DR, Miles CW, Mitchell JE, et al., LABS Consortium Writing Group. Safety and efficacy of bariatric surgery: longitudinal assessment of Bariatric surgery. Surg Obes Relat Dis 2007; 3: 116–126.

    Article  Google Scholar 

  3. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625–1638.

    Article  Google Scholar 

  4. Larsson SC, Wolk A . Excess body fatness: an important cause of most cancers. Lancet 2008; 371: 536–537.

    Article  Google Scholar 

  5. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H et al. Swedish obese subjects study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–752.

    Article  Google Scholar 

  6. Gastrointestinal Surgery for Severe Obesity. NIH Consensus Statement 1991 Mar 25–27; 9: 1–20.

  7. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007; 357: 753–761.

    Article  CAS  Google Scholar 

  8. Mitchell JE, Lancaster KL, Burgard MA, Howell LM, Krahn DD, Crosby RD et al. Long-term follow-up of patients’ status after gastric bypass. Obes Surg 2001; 11: 464–468.

    Article  CAS  Google Scholar 

  9. MacLean LD, Rhode BM, Shizgal HM . Nutrition following gastric operations for morbid obesity. Ann Surg 1983; 198: 347–355.

    Article  CAS  Google Scholar 

  10. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002; 346: 1623–1630.

    Article  Google Scholar 

  11. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243: 108–114.

    Article  Google Scholar 

  12. Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity 2006; 14: 1553–1561.

    Article  CAS  Google Scholar 

  13. Nadler ST, Stoehr JP, Schueler KL, Tanimoto G, Yandell BS, Attie AD . The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci USA 2000; 97: 11371–11376.

    Article  CAS  Google Scholar 

  14. Xu Y, Ramos EJ, Middleton F, Romanova I, Quinn R, Chen C et al. Gene expression profiles post Roux-en-Y gastric bypass. Surgery 2004; 136: 246–252.

    Article  Google Scholar 

  15. Trivedi P, Edwards JW, Wang J, Gadbury GL, Srinivasasainagendra V, Zakharkin SO et al. HDBStat!: a platform-independent software suite for statistical analysis of high dimensional biology data. BMC Bioinformatics 2005; 6: 86.

    Article  Google Scholar 

  16. Li C, Wong WH . Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

  17. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995; 57: 289–300.

    Google Scholar 

  18. Allison DB, Gadbury GL, Heo M, Fernández JR, Lee C, Prolla TA et al. A mixture model approach for the analysis of microarray gene expression data. Comput Stat Data Anal 2002; 39: 1–20.

    Article  Google Scholar 

  19. Rossmeisl M, Flachs P, Brauner P, Sponarova J, Matejkova O, Prazak T et al. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int J Obes Relat Metab Disord 2004; 28 (Suppl 4): S38–S44.

    Article  CAS  Google Scholar 

  20. Long YC, Zierath JR . AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116: 1776–1783.

    Article  CAS  Google Scholar 

  21. Löbbert RW, Winterpacht A, Seipel B, Zabel BU . Molecular cloning and chromosomal assignment of the human homologue of the rat cGMP-inhibited phosphodiesterase 1 (PDE3A)- a gene involved in fat metabolism located at 11p 15.1. Genomics 1996; 37: 211–218.

    Article  Google Scholar 

  22. Pereira RM, Aguiar-Oliveira MH, Sagazio A, Oliveira CR, Oliveira FT, Campos VC et al. Heterozygosity for a mutation in the growth hormone-releasing hormone receptor gene does not influence adult stature, but affects body composition. J Clin Endocrinol Metab 2007; 92: 2353–2357.

    Article  CAS  Google Scholar 

  23. Tanizawa Y, Nakai K, Sasaki T, Anno T, Ohta Y, Inoue H et al. Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes 2002; 51: 712–717.

    Article  CAS  Google Scholar 

  24. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB . Sequence and expression of a candidate for the human Secretor blood group alpha(1,2) fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 1995; 270: 4640–4649.

    Article  CAS  Google Scholar 

  25. Roos C, Kolmer M, Mattila P, Renkonen R . Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism. J Biol Chem 2002; 277: 3168–3175.

    Article  CAS  Google Scholar 

  26. Vantyghem MC, Fajardy I, Dhondt F, Girardot C, D’Herbomez M, Danze PM et al. Phenotype and HFE genotype in a population with abnormal iron markers recruited from an Endocrinology Department. Eur J Endocrinol 2006; 154: 835–841.

    Article  CAS  Google Scholar 

  27. Farahani P, Chiu S, Bowlus CL, Boffelli D, Lee E, Fisler JS et al. Obesity in BSB mice is correlated with expression of genes for iron homeostasis and leptin. Obes Res 2004; 12: 191–204.

    Article  CAS  Google Scholar 

  28. Rose AJ, Hargreaves M . Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol 2003; 553: 303–309.

    Article  CAS  Google Scholar 

  29. Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Vassilopoulos D et al. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder. Am J Med Genet 1998; 81: 73–80.

    Article  CAS  Google Scholar 

  30. Otani K, Ujike H, Tanaka Y, Morita Y, Katsu T, Nomura A et al. The GABA type A receptor alpha5 subunit gene is associated with bipolar I disorder. Neurosci Lett 2005; 381: 108–113.

    Article  CAS  Google Scholar 

  31. Souza FG, Mander AJ, Foggo M, Dick H, Shearing CH, Goodwin GM . The effects of lithium discontinuation and the non-effect of oral inositol upon thyroid hormones and cortisol in patients with bipolar affective disorder. Affect Disord 1991; 22: 165–170.

    Article  CAS  Google Scholar 

  32. Robinson JK, Bartfai T, Langel U . Galanin/GALP receptors and CNS homeostatic processes. CNS Neurol Disord Drug Targets 2006; 5: 327–334.

    Article  CAS  Google Scholar 

  33. Vrontakis ME . Galanin: a biologically active peptide. Curr Drug Targets CNS Neurol Disord 2002; 1: 531–541.

    Article  CAS  Google Scholar 

  34. Novak G, Seeman P, Tallerico T . Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synapse 2006; 59: 61–68.

    Article  CAS  Google Scholar 

  35. Münch G, Bölck B, Karczewski P, Schwinger RH . Evidence for calcineurin-mediated regulation of SERCA 2a activity in human myocardium. J Mol Cell Cardiol 2002; 34: 321–334.

    Article  Google Scholar 

  36. Lemos MC, Kotanko P, Christie PT, Harding B, Javor T, Smith C et al. A novel EXT1 splice site mutation in a kindred with hereditary multiple exostosis and osteoporosis. J Clin Endocrinol Metab 2005; 90: 5386–5392.

    Article  CAS  Google Scholar 

  37. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S . Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 2003; 144: 5081–5088.

    Article  CAS  Google Scholar 

  38. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E . X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 2004; 89: 6208–6217.

    Article  CAS  Google Scholar 

  39. Chen HY, Chen WC, Wu MC, Tsai FJ, Tsai CH . Androgen receptor (AR) gene microsatellite polymorphism in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporosis. Eur J Obstet Gynecol Reprod Biol 2003; 107: 52–56.

    Article  CAS  Google Scholar 

  40. Magklara A, Brown TJ, Diamandis EP . Characterization of androgen receptor and nuclear receptor co-regulator expression in human breast cancer cell lines exhibiting differential regulation of kallikreins 2 and 3. Int J Cancer 2002; 100: 507–514.

    Article  CAS  Google Scholar 

  41. Kominea A, Konstantinopoulos PA, Kapranos N, Vandoros G, Gkermpesi M, Andricopoulos P et al. Androgen receptor (AR) expression is an independent unfavorable prognostic factor in gastric cancer. J Cancer Res Clin Oncol 2004; 130: 253–258.

    Article  CAS  Google Scholar 

  42. Leung JK, Pereira-Smith OM . Identification of genes involved in cell senescence and immortalization: potential implications for tissue ageing. Novartis Found Symp 2001; 235: 105–110; discussion 110–5; 146–9.

    CAS  PubMed  Google Scholar 

  43. Pena AN, Pereira-Smith OM . The role of the MORF/MRG family of genes in cell growth, differentiation, DNA repair, and thereby aging. Ann N Y Acad Sci 2007; 1100: 299–305.

    Article  CAS  Google Scholar 

  44. Schultz K, Rasmussen LM, Ledet T . Expression levels and functional aspects of the hyaluronan receptor CD44. Effects of insulin, glucose, IGF-I, or growth hormone on human arterial smooth muscle cells. Metabolism 2005; 54: 287–295.

    Article  CAS  Google Scholar 

  45. Katoh M . Regulation of WNT3 and WNT3A mRNAs in human cancer cell lines NT2, MCF-7, and MKN45. Int J Oncol 2002; 20: 373–377.

    CAS  PubMed  Google Scholar 

  46. Chiba H, Kobune M, Kato J, Kawano Y, Ito Y, Nakamura K et al. Wnt3 modulates the characteristics and cobblestone area-supporting activity of human stromal cells. Exp Hematol 2004; 32: 1194–1203.

    Article  CAS  Google Scholar 

  47. Garcia-Barceló MM, Lee WS, Sham MH, Lui VC, Tam PK . Is there a role for the IHH gene in Hirschsprung's disease? Neurogastroenterol Motil 2003; 15: 663–668.

    Article  Google Scholar 

  48. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425: 846–851.

    Article  CAS  Google Scholar 

  49. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 2004; 36: 277–282.

    Article  CAS  Google Scholar 

  50. Jin C, Ding P, Wang Y, Ma D . Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett 2005; 579: 6375–6382.

    Article  CAS  Google Scholar 

  51. Birger Y, Catez F, Furusawa T, Lim JH, Prymakowska-Bosak M, West KL et al. Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1. Cancer Res 2005; 65: 6711–6718.

    Article  CAS  Google Scholar 

  52. Yasuda M, Nakano K, Yasumoto K, Tanaka Y . CD44: functional relevance to inflammation and malignancy. Histol Histopathol 2002; 17: 945–950.

    CAS  PubMed  Google Scholar 

  53. Jayan GC, Casey JL . Inhibition of hepatitis delta virus RNA editing by short inhibitory RNA-mediated knockdown of ADAR1 but not ADAR2 expression. J Virol 2002; 76: 12399–12404.

    Article  CAS  Google Scholar 

  54. Elshatorya Y, Brooksb AI, Chattopadhyaya CS, Currana TM, Guptad P, Ramalingamd V et al. Changes in gene expression in two models of batten disease. FEBS Let 2003; 538: 207–212.

    Article  Google Scholar 

  55. Pilane CM, LaBelle EF . cPLA2 activator peptide, PLAP, increases arachidonic acid release and apoptosis of vascular smooth muscle cells. J Cell Physiol 2004; 198: 48–52.

    Article  CAS  Google Scholar 

  56. Okumura Y, Mizushimab H, Sunamoto J . Relocation of active acetylcholinesterase to liposome–gel conjugate. J Colloid Interface Sci 2007; 307: 296–299.

    Article  CAS  Google Scholar 

  57. de Vet EC, Ijlst L, Oostheim W, Dekker C, Moser HW, van den Bosch H et al. Ether lipid biosynthesis: alkyl-dihydroxyacetonephosphate synthase protein deficiency leads to reduced dihydroxyacetonephosphate acyltransferase activities. J Biol Chem 1998; 273: 10296–10301.

    Article  CAS  Google Scholar 

  58. Hsu LC, Chang WC, Yoshida A . Cloning of a cDNA encoding human ALDH7, a new member of the aldehyde dehydrogenase family. Gene 1994; 151: 285–289.

    Article  CAS  Google Scholar 

  59. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529–644.

    Article  Google Scholar 

  60. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003; 422: 297–302.

    Article  CAS  Google Scholar 

  61. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008; 452: 429–435.

    Article  CAS  Google Scholar 

  62. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al. Genetics of gene expression and its effect on disease. Nature 2008; 452: 423–428.

    Article  CAS  Google Scholar 

  63. Dempfle A, Hinney A, Heinzel-Gutenbrunner M, Raab M, Geller F, Gudermann T et al. Large quantitative effect of melanocortin-4 receptor gene mutations on body mass index. J Med Genet 2004; 41: 795–800.

    Article  CAS  Google Scholar 

  64. Hegele RA . Lessons from human mutations in PPARgamma. Int J Obes (Lond) 2005; 29 (Suppl 1): S31–S35.

    Article  CAS  Google Scholar 

  65. Allison DB, Cui X, Page GP, Sabripour M . Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006; 7: 55–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Nancy Keim for stimulating discussions and the reviewers for their constructive comments. This work was supported by USDA-CRIS 5306-51530-016-00D and NIH DK52581 (CW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Perroud, B., Espinal, G. et al. Genes and networks expressed in perioperative omental adipose tissue are correlated with weight loss from Roux-en-Y gastric bypass. Int J Obes 32, 1395–1406 (2008). https://doi.org/10.1038/ijo.2008.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.106

Keywords

This article is cited by

Search

Quick links