Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Microvascular dysfunction: a direct link among BMI, waist circumference and glucose homeostasis in young overweight/obese normoglycemic women?

Abstract

Objective:

Capillary recruitment is impaired in obesity (OB), possibly worsening glucose and insulin availability to target organs. In this study, we investigated whether functional microvascular parameters were correlated with clinical–anthropometrical data and whether these parameters would influence OB-related metabolic disorders, especially glucose homeostasis, in young overweight (OW)/obese women.

Design:

Cross-sectional clinical study of microvascular reactivity in young OW/obese women.

Subjects and methods:

A total of 10 lean (23.1±3.2 years, body mass index (BMI) 22.3±1.6 kg m−2) and 42 OW/obese (24.9±3.5 years; BMI 34.5±5.7 (25.7–46.5) kg m−2) sedentary non-smoking women were evaluated. Lipid profile, fasting plasma glucose (PG), post-load PG (75 g–2 h), insulin, C-reactive protein, HOMA-IR (homeostasis model assessment for insulin resistance) index and anthropometric variables (weight, BMI, waist and hip circumferences, waist-to-hip ratio and blood pressure (BP)) were determined. Functional microvascular parameters (functional capillary density, red blood cell velocity at baseline and peak (RBCVmax), and time taken to reach RBCVmax (TRBCVmax) during post-occlusive reactive hyperemia after 1 min arterial occlusion) were evaluated by nailfold videocapillaroscopy.

Results:

The time taken to reach RBCVmax was significantly longer in OW/obese patients compared with control subjects (8.6±2.4 versus 5.7±1.1 s, P<0.001), and its delay was directly associated with adiposity levels, systolic BP and insulin resistance, and inversely related to high-density lipoprotein-cholesterol. Post-load PG could be correlated with TRBCVmax (R=0.48, P<0.05) and RBCVmax (R=−0.29, P<0.05), and it was influenced by weight, waist circumference and TRBCVmax (adjusted R2=24%) as well.

Conclusions:

In the investigated group of young OW/obese women, the direct correlation between post-load PG and TRBCVmax links microvascular parameters with metabolic variables and suggests a key role for microcirculation in OB-related metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Popkin BM . The nutrition transition: an overview of world patterns of change. Nutr Rev 2004; 62 (7 Pt 2): S140–S143.

    Article  Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, Johnson CL . Prevalence and trends in obesity among US adults, 1999–2000. JAMA 2002; 288: 1723–1727.

    Article  Google Scholar 

  3. Haslam DW, James WP . Obesity. Lancet 2005; 366: 1197–1209.

    Article  Google Scholar 

  4. Goodman E, Dolan LM, Morrison JA, Daniels SR . Factor analysis of clustered cardiovascular risks in adolescence: obesity is the predominant correlate of risk among youth. Circulation 2005; 111: 1970–1977.

    Article  Google Scholar 

  5. Burke V . Obesity in childhood and cardiovascular risk. Clin Exp Pharmacol Physiol 2006; 33: 831–837.

    Article  CAS  Google Scholar 

  6. Singhal A . Endothelial dysfunction: role in obesity-related disorders and the early origins of CVD. Proc Nutr Soc 2005; 64: 15–22.

    Article  Google Scholar 

  7. Wildman RP, Mackey RH, Bostom A, Thompson T, Sutton-Tyrrell K . Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension 2003; 42: 468–473.

    Article  CAS  Google Scholar 

  8. de Jongh PE, Verhave JC, Pinto-Siestma SJ, Hillege HL . Obesity and target organ damage: the kidney. Int J Obes Relat Metab Disord 2002; 26 (Suppl 4): S21–S24.

    Article  Google Scholar 

  9. Kenchaiah S, Gaziano JM, Vasan RS . Impact of obesity on the risk of heart failure and survival after the onset of heart failure. Med Clin North Am 2004; 88: 1273–1294.

    Article  Google Scholar 

  10. Clark MG, Wallis MG, Barrett EJ, Vincent MA, Richards SM, Clerk LH et al. Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol Metab 2003; 284: E241–E258.

    Article  CAS  Google Scholar 

  11. Vollus GC, Bradley EA, Roberts MK, Newman JM, Richards SM, Rattigan S et al. Graded occlusion of perfused rat muscle vasculature decreases insulin action. Clin Sci (Lond) 2007; 112: 457–466.

    Article  CAS  Google Scholar 

  12. Cersosimo E, DeFronzo RA . Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 2006; 22: 423–436.

    Article  CAS  Google Scholar 

  13. Wiernsperger N, Nivoit P, de Aguiar LG, Bouskela E . Microcirculation and the metabolic syndrome. Microcirculation 2007; 14: 403–438.

    Article  CAS  Google Scholar 

  14. Serne EH, de Jongh RT, Eringa EC, Ijzerman RG, Stehouwer CD . Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension 2007; 50: 204–211.

    Article  CAS  Google Scholar 

  15. Pinkney JH, Stehouwer CD, Coppack SW, Yudkin JS . Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes 1997; 46 (Suppl 2): S9–S13.

    Article  CAS  Google Scholar 

  16. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR . Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 1993; 42: 1017–1025.

    Article  CAS  Google Scholar 

  17. Pazos-Moura CC, Moura EG, Bouskela E, Torres Filho IP, Breitenbach MM . Nailfold capillaroscopy in non-insulin dependent diabetes mellitus: blood flow velocity during rest and post-occlusive reactive hyperaemia. Clin Physiol 1990; 10: 451–461.

    Article  CAS  Google Scholar 

  18. ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004; 27 (Suppl 1): S5–S10.

    Google Scholar 

  19. Kraemer de Aguiar LG, Laflor CM, Bahia L, Villela NR, Wiernsperger N, Bottino DA et al. Metformin improves skin capillary reactivity in normoglycaemic subjects with the metabolic syndrome. Diabet Med 2007; 24: 272–279.

    Article  CAS  Google Scholar 

  20. Kraemer-Aguiar LG, Laflor CM, Bouskela E . Skin microcirculatory dysfunction is already present in normoglycemic subjects with metabolic syndrome. Metabolism 2008; 57: 1740–1746.

    Article  CAS  Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  22. de Jongh RT, Serne EH, Ijzerman RG, de VG, Stehouwer CD . Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 2004; 109: 2529–2535.

    Article  Google Scholar 

  23. Caballero AE . Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obesity Res 2003; 11: 1278–1289.

    Article  CAS  Google Scholar 

  24. Noon JP, Walker BR, Webb DJ, Shore AC, Holton DW, Edwards HV et al. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest 1997; 99: 1873–1879.

    Article  CAS  Google Scholar 

  25. Lakhani K, Leonard A, Seifalian AM, Hardiman P . Microvascular dysfunction in women with polycystic ovary syndrome. Hum Reprod 2005; 20: 3219–3224.

    Article  CAS  Google Scholar 

  26. Gates PE, Strain WD, Shore AC . Human endothelial function and microvascular ageing. Exp Physiol 2009; 94: 311–316.

    Article  Google Scholar 

  27. Meininger GA . Responses of sequentially branching macro- and microvessels during reactive hyperemia in skeletal muscle. Microvasc Res 1987; 34: 29–45.

    Article  CAS  Google Scholar 

  28. Walmsley D, Wiles PG . Reactive hyperaemia in skin of the human foot measured by laser Doppler flowmetry: effects of duration of ischaemia and local heating. Int J Microcirc Clin Exp 1990; 9: 345–355.

    CAS  PubMed  Google Scholar 

  29. Schubert R, Mulvany MJ . The myogenic response: established facts and attractive hypotheses. Clin Sci (Lond) 1999; 96: 313–326.

    Article  CAS  Google Scholar 

  30. Charkoudian N . Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 2003; 78: 603–612.

    Article  Google Scholar 

  31. Johnson JM, Brengelmann GL, Hales JR, Vanhoutte PM, Wenger CB . Regulation of the cutaneous circulation. Fed Proc 1986; 45: 2841–2850.

    CAS  PubMed  Google Scholar 

  32. Alpert MA . Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001; 321: 225–236.

    Article  CAS  Google Scholar 

  33. De SG, Devereux RB, Mureddu GF, Roman MJ, Ganau A, Alderman MH et al. Influence of obesity on left ventricular midwall mechanics in arterial hypertension. Hypertension 1996; 28: 276–283.

    Article  Google Scholar 

  34. Kashyap SR, DeFronzo RA . The insulin resistance syndrome: physiological considerations. Diab Vasc Dis Res 2007; 4: 13–19.

    Article  Google Scholar 

  35. Cleland SJ, Petrie JR, Ueda S, Elliott HL, Connell JM . Insulin-mediated vasodilation and glucose uptake are functionally linked in humans. Hypertension 1999; 33 (1 Pt 2): 554–558.

    Article  CAS  Google Scholar 

  36. Serne EH, Ijzerman RG, Gans RO, Nijveldt R, de VG, Evertz R et al. Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes 2002; 51: 1515–1522.

    Article  CAS  Google Scholar 

  37. Jaap AJ, Shore AC, Tooke JE . Relationship of insulin resistance to microvascular dysfunction in subjects with fasting hyperglycaemia. Diabetologia 1997; 40: 238–243.

    Article  CAS  Google Scholar 

  38. Serne EH, Stehouwer CD, ter Maaten JC, ter Wee PM, Rauwerda JA, Donker AJ et al. Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation 1999; 99: 896–902.

    Article  CAS  Google Scholar 

  39. Serne EH, Gans RO, ter Maaten JC, Tangelder GJ, Donker AJ, Stehouwer CD . Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension 2001; 38: 238–242.

    Article  CAS  Google Scholar 

  40. de Jongh RT, Clark AD, Ijzerman RG, Serne EH, de VG, Stehouwer CD . Physiological hyperinsulinaemia increases intramuscular microvascular reactive hyperaemia and vasomotion in healthy volunteers. Diabetologia 2004; 47: 978–986.

    Article  CAS  Google Scholar 

  41. de Jongh RT, Serne EH, Ijzerman RG, Jorstad HT, Stehouwer CD . Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvasc Res 2008; 75: 256–262.

    Article  CAS  Google Scholar 

  42. Duprez D, De BM, De SJ, De BT, Clement DL . Peripheral vascular changes and ambulatory blood pressure profiles. Am J Hypertens 1993; 6: 1033–1039.

    Article  CAS  Google Scholar 

  43. de Aguiar LG, Bahia LR, Villela N, Laflor C, Sicuro F, Wiernsperger N et al. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care 2006; 29: 1083–1089.

    Article  CAS  Google Scholar 

  44. Ferrannini E, Mari A . How to measure insulin sensitivity. J Hypertens 1998; 16: 895–906.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the National Research Council of Brazil (CNPq) and the State of Rio de Janeiro Financing Agency for Research (FAPERJ). We thank Miss Fátima Zely Garcia de Almeida Cyrino and Mr Waldicio da Silva Soares for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L G Kraemer-Aguiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer-Aguiar, L., Maranhão, P., Sicuro, F. et al. Microvascular dysfunction: a direct link among BMI, waist circumference and glucose homeostasis in young overweight/obese normoglycemic women?. Int J Obes 34, 111–117 (2010). https://doi.org/10.1038/ijo.2009.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.209

Keywords

This article is cited by

Search

Quick links