Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole

Abstract

Objective:

In mice and in humans, treatment with the second-generation antipsychotic drug olanzapine (OLZ) produces excessive weight gain, adiposity and secondary metabolic complications, including loss of glucose and insulin homeostasis. In mice consuming a high-fat (HF) diet, a similar phenotype develops, which is inhibited by the analgesic acetaminophen (APAP) and by the antioxidant tetrahydroindenoindole (THII). Therefore, we examined the ability of APAP and THII to prevent metabolic changes in mice receiving OLZ.

Design and Measurement:

C57BL/6J mice received either a normal diet or a HF diet, and were administered daily dosages of OLZ (3 mg kg−1 body weight), alone or with APAP (30 mg kg−1 body weight) or THII (4.5 mg kg−1 body weight), for 10 weeks. Parameters of body composition and metabolism, including glucose and insulin homeostasis and oxidative stress, were examined.

Results:

OLZ treatment doubled the HF diet-induced increases in body weight and percent body fat. These increases were partially prevented by both APAP and THII, although food consumption was constant in all groups. The THII protection was associated with an increase in whole body and mitochondrial respiration. OLZ also exacerbated, and both APAP and THII prevented, HF diet-induced loss of glucose tolerance and insulin resistance. As increased body fat promotes insulin resistance by a pathway involving oxidative stress, we evaluated production of reactive oxygen and lipid peroxidation in white adipose tissue (WAT). HF diet caused an increase in lipid peroxidation, NADPH-dependent O2 uptake and H2O2 production, which were further exacerbated by OLZ. APAP, THII and the NADPH oxidase inhibitor, diphenyleneiodonium chloride, each abolished oxidative stress in WAT.

Conclusions:

We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB . Annual deaths attributable to obesity in the United States. JAMA 1999; 282: 1530–1538.

    Article  CAS  Google Scholar 

  2. Nasrallah H . A review of the effect of atypical antipsychotics on weight. Psychoneuroendocrinology 2003; 28 (Suppl 1): 83–96.

    Article  CAS  Google Scholar 

  3. Goudie AJ, Cooper GD, Halford JC . Antipsychotic-induced weight gain. Diabetes Obes Metab 2005; 7: 478–487.

    Article  CAS  Google Scholar 

  4. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  Google Scholar 

  5. Daumit GL, Goff DC, Meyer JM, Davis VG, Nasrallah HA, McEvoy JP et al. Antipsychotic effects on estimated 10-year coronary heart disease risk in the CATIE schizophrenia study. Schizophr Res 2008; 105: 175–187.

    Article  Google Scholar 

  6. Klein DJ, Cottingham EM, Sorter M, Barton BA, Morrison JA . A randomized, double-blind, placebo-controlled trial of metformin treatment of weight gain associated with initiation of atypical antipsychotic therapy in children and adolescents. Am J Psychiatry 2006; 163: 2072–2079.

    Article  Google Scholar 

  7. Coccurello R, Caprioli A, Ghirardi O, Conti R, Ciani B, Daniele S et al. Chronic administration of olanzapine induces metabolic and food intake alterations: a mouse model of the atypical antipsychotic-associated adverse effects. Psychopharmacology (Berl) 2006; 186: 561–571.

    Article  CAS  Google Scholar 

  8. Cope MB, Nagy TR, Fernandez JR, Geary N, Casey DE, Allison DB . Antipsychotic drug-induced weight gain: development of an animal model. Int J Obes (Lond) 2005; 29: 607–614.

    Article  CAS  Google Scholar 

  9. Shertzer HG, Schneider SN, Kendig EL, Clegg DJ, D'Alessio DA, Genter MB . Acetaminophen normalizes glucose homeostasis in mouse models for diabetes. Biochem Pharmacol 2008; 75: 1402–1410.

    Article  CAS  Google Scholar 

  10. Kendig EL, Schneider SN, Clegg DJ, Genter MB, Shertzer HG . Over-the-counter analgesics normalize blood glucose and body composition in mice fed a high fat diet. Biochem Pharmacol 2008; 76: 216–224.

    Article  CAS  Google Scholar 

  11. Shertzer HG, Schneider SN, Kendig EL, Clegg DJ, D'Alessio DA, Johansson E et al. Tetrahydroindenoindole inhibits the progression of diabetes in mice. Chem Biol Interact 2009; 177: 71–80.

    Article  CAS  Google Scholar 

  12. Shertzer HG, Sainsbury M, Graupner PR, Berger ML . Mechanisms of chemical mediated cytotoxicity and chemoprotection in isolated rat hepatocytes. Chem Biol Interact 1991; 78: 123–141.

    Article  CAS  Google Scholar 

  13. Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P . A controlled high-fat diet induces an obese syndrome in rats. J Nutr 2003; 133: 1081–1087.

    Article  CAS  Google Scholar 

  14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  15. Wallace TM, Levy JC, Matthews DR . Use and abuse of HOMA modeling. Diabetes Care 2004; 27: 1487–1495.

    Article  Google Scholar 

  16. Tinsley FC, Taicher GZ, Heiman ML . Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes Res 2004; 12: 150–160.

    Article  Google Scholar 

  17. Clegg DJ, Brown LM, Woods SC, Benoit SC . Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 2006; 55: 978–987.

    Article  CAS  Google Scholar 

  18. Senft AP, Dalton TP, Nebert DW, Genter MB, Puga A, Hutchinson RJ et al. Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Biol Med 2002; 33: 1268–1278.

    Article  CAS  Google Scholar 

  19. Shertzer HG, Clay CD, Genter MB, Chames MC, Schneider SN, Oakley GG et al. Uncoupling-mediated generation of reactive oxygen by halogenated aromatic hydrocarbons in mouse liver microsomes. Free Radic Biol Med 2004; 36: 618–631.

    Article  CAS  Google Scholar 

  20. Zhu H, Bannenberg GL, Moldeus P, Shertzer HG . Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol 1994; 68: 582–587.

    Article  CAS  Google Scholar 

  21. Zhu H, He M, Bannenberg GL, Moldeus P, Shertzer HG . Effects of glutathione and pH on the oxidation of biomarkers of cellular oxidative stress. Arch Toxicol 1996; 70: 628–634.

    Article  CAS  Google Scholar 

  22. Shertzer HG, Berger ML, Tabor MW . Intervention in free radical mediated hepatotoxicity and lipid peroxidation by indole-3-carbinol. Biochem Pharmacol 1988; 37: 333–338.

    Article  CAS  Google Scholar 

  23. Petro AE, Cotter J, Cooper DA, Peters JC, Surwit SJ, Surwit RS . Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse. Metabolism 2004; 53: 454–457.

    Article  CAS  Google Scholar 

  24. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN . Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988; 37: 1163–1167.

    Article  CAS  Google Scholar 

  25. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 2008; 57: 1071–1077.

    Article  CAS  Google Scholar 

  26. Lafontan M, Girard J . Impact of visceral adipose tissue on liver metabolism. Part I: heterogeneity of adipose tissue and functional properties of visceral adipose tissue. Diabetes Metab 2008; 34 (4 Part 1): 317–327.

    Article  CAS  Google Scholar 

  27. Yang LH, Chen TM, Yu ST, Chen YH . Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacol Res 2007; 56: 202–208.

    Article  CAS  Google Scholar 

  28. Ader M, Kim SP, Catalano KJ, Ionut V, Hucking K, Richey JM et al. Metabolic dysregulation with atypical antipsychotics occurs in the absence of underlying disease: a placebo-controlled study of olanzapine and risperidone in dogs. Diabetes 2005; 54: 862–871.

    Article  CAS  Google Scholar 

  29. Dwyer DS, Donohoe D . Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake. Pharmacol Biochem Behav 2003; 75: 255–260.

    Article  CAS  Google Scholar 

  30. Coccurello R, Caprioli A, Conti R, Ghirardi O, Borsini F, Carminati P et al. Olanzapine (LY170053, 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine), but not the novel atypical antipsychotic ST2472 (9-piperazin-1-ylpyrrolo[2,1-b][1,3]benzothiazepine), chronic administration induces weight gain, hyperphagia, and metabolic dysregulation in mice. J Pharmacol Exp Ther 2008; 326: 905–911.

    Article  CAS  Google Scholar 

  31. Robinson KA, Yacoub Wasef SZ, Buse MG . At therapeutic concentrations, olanzapine does not affect basal or insulin-stimulated glucose transport in 3T3-L1 adipocytes. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 93–98.

    Article  CAS  Google Scholar 

  32. Neri S, Signorelli SS, Torrisi B, Pulvirenti D, Mauceri B, Abate G et al. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: a single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin Ther 2005; 27: 1764–1773.

    Article  CAS  Google Scholar 

  33. Robertson RP, Harmon J, Tran PO, Poitout V . Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004; 53 (Suppl 1): S119–S124.

    Article  CAS  Google Scholar 

  34. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787–790.

    Article  CAS  Google Scholar 

  35. Schildknecht S, Daiber A, Ghisla S, Cohen RA, Bachschmid MM . Acetaminophen inhibits prostanoid synthesis by scavenging the PGHS-activator peroxynitrite. FASEB J 2008; 22: 215–224.

    Article  CAS  Google Scholar 

  36. Brown DW, Graupner PR, Sainsbury M, Shertzer HG . New antioxidants incorporating indole and indoline chromophores. Tetrahedron 1991; 47: 4383–4408.

    Article  CAS  Google Scholar 

  37. Shertzer HG, Sainsbury M, Reilman R, Warshawsky D . Retardation of benzo[a]pyrene-induced epidermal tumor formation by the potent antioxidant 4b,5,9b,10-tetrahydroindeno[1,2-b]indole. Cancer Lett 1994; 86: 209–214.

    Article  CAS  Google Scholar 

  38. Westerlund C, Ostlund-Lindqvist AM, Sainsbury M, Shertzer HG, Sjoquist PO . Characterization of novel indenoindoles. Part I. Structure-activity relationships in different model systems of lipid peroxidation. Biochem Pharmacol 1996; 51: 1397–1402.

    Article  CAS  Google Scholar 

  39. Mouche S, Mkaddem SB, Wang W, Katic M, Tseng YH, Carnesecchi S et al. Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochim Biophys Acta 2007; 1773: 1015–1027.

    Article  CAS  Google Scholar 

  40. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ . Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293: C584–C596.

    Article  CAS  Google Scholar 

  41. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114: 1752–1761.

    Article  CAS  Google Scholar 

  42. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE . Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 1995; 333: 550–554.

    Article  CAS  Google Scholar 

  43. Cheng JT, Huang CC, Liu IM, Tzeng TF, Chang CJ . Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes 2006; 55: 819–825.

    Article  CAS  Google Scholar 

  44. Patane G, Piro S, Rabuazzo AM, Anello M, Vigneri R, Purrello F . Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 2000; 49: 735–740.

    Article  CAS  Google Scholar 

  45. Strack T . Metformin: a review. Drugs Today (Barc) 2008; 44: 303–314.

    Article  CAS  Google Scholar 

  46. Sahin M, Tutuncu NB, Ertugrul D, Tanaci N, Guvener ND . Effects of metformin or rosiglitazone on serum concentrations of homocysteine, folate, and vitamin B12 in patients with type 2 diabetes mellitus. J Diabetes Complications 2007; 21: 118–123.

    Article  Google Scholar 

  47. Khanna V, Arumugam S, Roy S, Mittra S, Bansal VS . Topiramate and type 2 diabetes: an old wine in a new bottle. Expert Opin Ther Targets 2008; 12: 81–90.

    Article  CAS  Google Scholar 

  48. Wallace KB, Eells JT, Madeira VMC, Cortopassi G, Jones DP . Mitochondria-mediated cell injury. Fundam Appl Toxicol 1997; 38: 23–37.

    Article  CAS  Google Scholar 

  49. Arif H, Buchsbaum R, Weintraub D, Pierro J, Resor Jr SR, Hirsch LJ . Patient-reported cognitive side effects of antiepileptic drugs: predictors and comparison of all commonly used antiepileptic drugs. Epilepsy Behav 2009; 14: 202–209.

    Article  Google Scholar 

  50. Werner AL, Travaglini MT . A review of rosiglitazone in type 2 diabetes mellitus. Pharmacotherapy 2001; 21: 1082–1099.

    Article  CAS  Google Scholar 

  51. Heikkinen S, Auwerx J, Argmann CA . PPARgamma in human and mouse physiology. Biochim Biophys Acta 2007; 1771: 999–1013.

    Article  CAS  Google Scholar 

  52. Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B . Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 2004; 145: 401–406.

    Article  CAS  Google Scholar 

  53. Ruano G, Goethe JW, Caley C, Woolley S, Holford TR, Kocherla M et al. Physiogenomic comparison of weight profiles of olanzapine- and risperidone-treated patients. Mol Psychiatry 2007; 12: 474–482.

    Article  CAS  Google Scholar 

  54. Aquila R, Emanuel M . Interventions for weight gain in adults treated with novel antipsychotics. Prim Care Companion J Clin Psychiatry 2000; 2: 20–23.

    Article  Google Scholar 

  55. Shen D, Dalton TP, Nebert DW, Shertzer HG . Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem 2005; 280: 25305–25312.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Schurdak for her technical assistance. This study was supported by NIEHS Center for Environmental Genetics Grant P30 ES06096 (HGS, MBG), and NIEHS training grants T32 ES117051 and T32 ES016646 (ELK). Funded also in part by NARSAD (HGS, MBG), the world's leading charity dedicated to mental health research, and through the University of Cincinnati Medical College Dean's Bridge Funds Program (MBG). Besides funding, there was no additional input from any funding source. All authors have made significant scientific contributions to the planning, experimentation and/or writing of this paper. All authors approved the final paper.

Author contributions: Howard G Shertzer: conceptualized the project, secured funding, and wrote the initial paper; Eric L Kendig: performed much of the experimentation and edited the paper; Henry A Nasrallah: contributed to the conceptualization of the study, and edited the paper; Elisabet Johansson: animal care and treatment, and implementation of experiments; Mary Beth Genter: helped conceive the project, secured funding, implemented experiments, edited and revised the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H G Shertzer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shertzer, H., Kendig, E., Nasrallah, H. et al. Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole. Int J Obes 34, 970–979 (2010). https://doi.org/10.1038/ijo.2009.291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.291

Keywords

This article is cited by

Search

Quick links