Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Taste, olfactory and food texture reward processing in the brain and obesity

Abstract

Complementary neuronal recordings and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex (OFC), these sensory inputs are for some neurons combined by learning with olfactory and visual inputs, and these neurons encode food reward in that they only respond to food when hungry, and in that activations correlate with subjective pleasantness. Cognitive factors, including word-level descriptions, and attention, modulate the representation of the reward value of food in the OFC. Further, there are individual differences in the representation of the reward value of food in the OFC. It is argued that overeating and obesity are related in many cases to an increased reward value of the sensory inputs produced by foods, and their modulation by cognition and attention, which overrides existing satiety signals. It is proposed that control of all rather than one or several of these factors that influence food reward and eating may be important in the prevention and treatment of overeating and obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rolls ET . Emotion Explained. Oxford University Press: Oxford, 2005.

    Google Scholar 

  2. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET . Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 1986; 56: 876–890.

    CAS  PubMed  Google Scholar 

  3. Yaxley S, Rolls ET, Sienkiewicz ZJ . Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol 1990; 63: 689–700.

    CAS  PubMed  Google Scholar 

  4. Rolls ET, Scott TR . Central taste anatomy and neurophysiology. In: Doty RL (ed). Handbook of Olfaction and Gustation, 2nd edn, Vol. Chap 32 Dekker: New York, 2003, pp 679–705.

    Google Scholar 

  5. Baylis LL, Rolls ET . Responses of neurons in the primate taste cortex to glutamate. Physiol Behav 1991; 49: 973–979.

    CAS  PubMed  Google Scholar 

  6. Rolls ET, Critchley H, Wakeman EA, Mason R . Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5′-monophosphate. Physiol Behav 1996; 59: 991–1000.

    CAS  PubMed  Google Scholar 

  7. Verhagen JV, Kadohisa M, Rolls ET . The primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature and taste of foods. J Neurophysiol 2004; 92: 1685–1699.

    PubMed  Google Scholar 

  8. Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S . The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol 1988; 397: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaxley S, Rolls ET, Sienkiewicz ZJ . The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav 1988; 42: 223–229.

    CAS  PubMed  Google Scholar 

  10. Rolls ET, Yaxley S, Sienkiewicz ZJ . Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 1990; 64: 1055–1066.

    CAS  PubMed  Google Scholar 

  11. Rolls ET . Taste and olfactory processing in the brain and its relation to the control of eating. Crit Rev Neurobiol 1997; 11: 263–287.

    CAS  PubMed  Google Scholar 

  12. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ et al. The receptors for mammalian sweet and umami taste. Cell 2003; 115: 255–266.

    CAS  PubMed  Google Scholar 

  13. Maruyama Y, Pereira E, Margolskee RF, Chaudhari N, Roper SD . Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 2006; 26: 2227–2234.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rolls ET, Critchley HD, Browning A, Hernadi I . The neurophysiology of taste and olfaction in primates, and umami flavor. Ann NY Acad Sci 1998; 855: 426–437.

    CAS  PubMed  Google Scholar 

  15. McCabe C, Rolls ET . Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci 2007; 25: 1855–1864.

    PubMed  Google Scholar 

  16. Rolls ET . Functional neuroimaging of umami taste: what makes umami pleasant. Am J Clin Nutr 2009; 90: 804S–813S.

    CAS  PubMed  Google Scholar 

  17. Critchley HD, Rolls ET . Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem Senses 1996; 21: 135–145.

    CAS  PubMed  Google Scholar 

  18. Rolls ET, Verhagen JV, Kadohisa M . Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness and capsaicin. J Neurophysiol 2003; 90: 3711–3724.

    PubMed  Google Scholar 

  19. Kadohisa M, Rolls ET, Verhagen JV . Orbitofrontal cortex neuronal representation of temperature and capsaicin in the mouth. Neuroscience 2004; 127: 207–221.

    CAS  PubMed  Google Scholar 

  20. Rolls ET . Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiologica Hungarica 2008; 95: 131–164.

    CAS  PubMed  Google Scholar 

  21. Pritchard TC, Edwards EM, Smith CA, Hilgert KG, Gavlick AM, Maryniak TD et al. Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. J Neurosci 2005; 25: 6047–6056.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rolls ET, Grabenhorst F . The orbitofrontal cortex and beyond: from affect to decision-making. Progr Neurobiol 2008; 86: 216–244.

    Google Scholar 

  23. Rolls ET . Sensory processing in the brain related to the control of food intake. Proc Nutr Soc 2007; 66: 96–112.

    PubMed  Google Scholar 

  24. Rolls ET . Central nervous mechanisms related to feeding and appetite. Br Med Bull 1981; 37: 131–134.

    CAS  PubMed  Google Scholar 

  25. Rolls ET, Murzi E, Yaxley S, Thorpe SJ, Simpson SJ . Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res 1986; 368: 79–86.

    CAS  PubMed  Google Scholar 

  26. Rolls ET, Sienkiewicz ZJ, Yaxley S . Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci 1989; 1: 53–60.

    PubMed  Google Scholar 

  27. Critchley HD, Rolls ET . Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol 1996; 75: 1673–1686.

    CAS  PubMed  Google Scholar 

  28. Cabanac M . Physiological role of pleasure. Science 1971; 173: 1103–1107.

    CAS  PubMed  Google Scholar 

  29. Rolls ET, Rolls BJ . Activity of neurones in sensory, hypothalamic and motor areas during feeding in the monkey. In: Katsuki Y, Sato M, Takagi S, Oomura Y (eds). Food Intake and Chemical Senses. University of Tokyo Press: Tokyo, 1977, pp 525–549.

    Google Scholar 

  30. Rolls BJ, Rolls ET, Rowe EA, Sweeney K . Sensory specific satiety in man. Physiol Behav 1981; 27: 137–142.

    CAS  PubMed  Google Scholar 

  31. Rolls BJ, Rowe EA, Rolls ET, Kingston B, Megson A, Gunary R . Variety in a meal enhances food intake in man. Physiol Behav 1981; 26: 215–221.

    CAS  PubMed  Google Scholar 

  32. Rolls BJ, Rowe EA, Rolls ET . How sensory properties of foods affect human feeding behavior. Physiol Behav 1982; 29: 409–417.

    CAS  PubMed  Google Scholar 

  33. Rolls ET, Rolls BJ . Brain mechanisms involved in feeding. In: Barker LM (ed). Psychobiology of Human Food Selection. AVI Publishing Company: Westport, CT, 1982, pp 33–62.

    Google Scholar 

  34. Rolls BJ, Rolls ET, Rowe EA . Body fat control and obesity. Behav Brain Sci 1983; 4: 744–745.

    Google Scholar 

  35. Rolls BJ, Van Duijvenvoorde PM, Rolls ET . Pleasantness changes and food intake in a varied four-course meal. Appetite 1984; 5: 337–348.

    CAS  PubMed  Google Scholar 

  36. Rolls BJ, Van Duijenvoorde PM, Rowe EA . Variety in the diet enhances intake in a meal and contributes to the development of obesity in the rat. Physiol Behav 1983; 31: 21–27.

    CAS  PubMed  Google Scholar 

  37. Rolls BJ, Hetherington M . The role of variety in eating and body weight regulation. In: Shepherd R (ed). Handbook of the Psychophysiology of Human Eating. Wiley: Chichester, 1989, pp 57–84.

    Google Scholar 

  38. Rolls ET, Rolls JH . Olfactory sensory-specific satiety in humans. Physiol Behav 1997; 61: 461–473.

    CAS  PubMed  Google Scholar 

  39. Hetherington MM . Cues to overeat: psychological factors influencing overconsumption. Proc Nutr Soc 2007; 66: 113–123.

    PubMed  Google Scholar 

  40. Rolls ET, Rolls BJ, Rowe EA . Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiol Behav 1983; 30: 185–192.

    CAS  PubMed  Google Scholar 

  41. Rolls ET, Baylis LL . Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 1994; 14: 5437–5452.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Critchley HD, Rolls ET . Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J Neurophysiol 1996; 75: 1659–1672.

    CAS  PubMed  Google Scholar 

  43. Rolls ET, Critchley HD, Treves A . The representation of olfactory information in the primate orbitofrontal cortex. J Neurophysiol 1996; 75: 1982–1996.

    CAS  PubMed  Google Scholar 

  44. Thorpe SJ, Rolls ET, Maddison S . Neuronal activity in the orbitofrontal cortex of the behaving monkey. Exp Brain Res 1983; 49: 93–115.

    CAS  PubMed  Google Scholar 

  45. Rolls ET . The orbitofrontal cortex. Phil Trans Roy Soc Lond B 1996; 351: 1433–1444.

    CAS  Google Scholar 

  46. Rolls ET, Critchley HD, Browning AS, Hernadi A, Lenard L . Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J Neurosci 1999; 19: 1532–1540.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Verhagen JV, Rolls ET, Kadohisa M . Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol 2003; 90: 1514–1525.

    PubMed  Google Scholar 

  48. Kadohisa M, Rolls ET, Verhagen JV . Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chem Senses 2005; 30: 401–419.

    PubMed  Google Scholar 

  49. Francis S, Rolls ET, Bowtell R, McGlone F, O’Doherty J, Browning A et al. The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 1999; 10: 453–459.

    CAS  PubMed  Google Scholar 

  50. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F . The representation of pleasant and aversive taste in the human brain. J Neurophysiol 2001; 85: 1315–1321.

    PubMed  Google Scholar 

  51. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F . Human cortical responses to water in the mouth, and the effects of thirst. J Neurophysiol 2003; 90: 1865–1876.

    PubMed  Google Scholar 

  52. Grabenhorst F, Rolls ET, Bilderbeck A . How cognition modulates affective responses to taste and flavor: top down influences on the orbitofrontal and pregenual cingulate cortices. Cerebr Cortex 2008; 18: 1549–1559.

    Google Scholar 

  53. Grabenhorst F, Rolls ET . Selective attention to affective value alters how the brain processes taste stimuli. Eur J Neurosci 2008; 27: 723–729.

    PubMed  Google Scholar 

  54. Zald DH, Lee JT, Fluegel KW, Pardo JV . Aversive gustatory stimulation activates limbic circuits in humans. Brain 1998; 121: 1143–1154.

    PubMed  Google Scholar 

  55. de Araujo IET, Kringelbach ML, Rolls ET, Hobden P . The representation of umami taste in the human brain. J Neurophysiol 2003; 90: 313–319.

    CAS  PubMed  Google Scholar 

  56. Poellinger A, Thomas R, Lio P, Lee A, Makris N, Rosen BR et al. Activation and habituation in olfaction- an fMRI study. NeuroImage 2001; 13: 547–560.

    CAS  PubMed  Google Scholar 

  57. Sobel N, Prabkakaran V, Zhao Z, Desmond JE, Glover GH, Sullivan EV et al. Time course of odorant-induced activation in the human primary olfactory cortex. J Neurophysiol 2000; 83: 537–551.

    CAS  PubMed  Google Scholar 

  58. Zald DH, Pardo JV . Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci USA 1997; 94: 4119–4124.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E . Functional localization of human olfactory cortex. Nature 1992; 360: 339–340.

    CAS  PubMed  Google Scholar 

  60. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G et al. Sensory-specific satiety related olfactory activation of the human orbitofrontal cortex. Neuroreport 2000; 11: 893–897.

    PubMed  Google Scholar 

  61. Rolls ET, Kringelbach ML, de Araujo IET . Different representations of pleasant and unpleasant odors in the human brain. Eur J Neurosci 2003; 18: 695–703.

    PubMed  Google Scholar 

  62. Grabenhorst F, Rolls ET . Valuation, pleasure, and choice systems in the prefrontal cortex, 2010 (submitted).

  63. Grabenhorst F, Rolls ET, Margot C, da Silva MAAP, Velazco MI . How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J Neurosci 2007; 27: 13532–13540.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. de Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N . Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 2003; 18: 2059–2068.

    PubMed  Google Scholar 

  65. Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D . Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 2004; 92: 1892–1903.

    PubMed  Google Scholar 

  66. Small DM, Prescott J . Odor/taste integration and the perception of flavor. Exp Brain Res 2005; 166: 345–357.

    PubMed  Google Scholar 

  67. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C . Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebr Cortex 2003; 13: 1064–1071.

    CAS  Google Scholar 

  68. de Araujo IET, Rolls ET . The representation in the human brain of food texture and oral fat. J Neurosci 2004; 24: 3086–3093.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rolls ET . Neural representation of fat texture in the mouth. In: Montmayeur J-P, Coutre lJ (eds). Fat Detection: Taste, Texture, and Postingestive Effects. CRC Press: Boca Raton, FL, 2010, pp 197–223.

    Google Scholar 

  70. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ . Neural responses during anticipation of a primary taste reward. Neuron 2002; 33: 815–826.

    PubMed  Google Scholar 

  71. Simmons WK, Martin A, Barsalou LW . Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebr Cortex 2005; 15: 1602–1608.

    Google Scholar 

  72. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M et al. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage 2004; 21: 1790–1797.

    PubMed  Google Scholar 

  73. de Araujo IET, Rolls ET, Velazco MI, Margot C, Cayeux I . Cognitive modulation of olfactory processing. Neuron 2005; 46: 671–679.

    CAS  PubMed  Google Scholar 

  74. Rolls ET, Grabenhorst F, Margot C, da Silva MAAP, Velazco MI . Selective attention to affective value alters how the brain processes olfactory stimuli. J Cognit Neurosci 2008; 20: 1815–1826.

    Google Scholar 

  75. Rolls ET, Deco G . The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. Oxford University Press: Oxford, 2010.

    Google Scholar 

  76. Rolls ET . Memory, Attention, and Decision-Making: A Unifying Computational Neuroscience Approach. Oxford University Press: Oxford, 2008.

    Google Scholar 

  77. Rolls ET . Consciousness, decision-making, and neural computation. In: Cutsuridis V, Hussain A, Taylor JG (eds). Perception-Action Cycle: Models, architectures and hardware. Springer: Berlin, 2010.

    Google Scholar 

  78. Grabenhorst F, Rolls ET, Parris BA . From affective value to decision-making in the prefrontal cortex. Eur J Neurosci 2008; 28: 1930–1939.

    PubMed  Google Scholar 

  79. Rolls ET, Grabenhorst F, Parris BA . Neural systems underlying decisions about affective odors. J Cognit Neurosci 2010; 22: 1069–1082.

    Google Scholar 

  80. Rolls ET, Grabenhorst F, Deco G . Choice, difficulty, and confidence in the brain. Neuroimage 2010 (in press).

  81. Rolls ET, Grabenhorst F, Deco G . Decision-making, errors, and confidence in the brain, 2010 (submitted).

    PubMed  Google Scholar 

  82. Rolls ET . Attractor networks. WIREs Cognit Sci 2010; 1: 119–134.

    Google Scholar 

  83. Wang XJ . Decision making in recurrent neuronal circuits. Neuron 2008; 60: 215–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Booth DA . Food-conditioned eating preferences and aversions with interoceptive elements: learned appetites and satieties. Ann NY Acad Sci 1985; 443: 22–37.

    CAS  PubMed  Google Scholar 

  85. Garrow JS . Obesity and Related Diseases. Churchill Livingstone: London, 1988.

    Google Scholar 

  86. Barsh GS, Schwartz MW . Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 2002; 3: 589–600.

    CAS  PubMed  Google Scholar 

  87. Cummings DE, Schwartz MW . Genetics and pathophysiology of human obesity. Ann Rev Med 2003; 54: 453–471.

    CAS  PubMed  Google Scholar 

  88. Schwartz MW, Porte D . Diabetes, obesity, and the brain. Science 2005; 307: 375–379.

    CAS  PubMed  Google Scholar 

  89. Brownell KD, Fairburn C . Eating Disorders and Obesity: A Comprehensive Handbook. Guildford Press: New York, 1995.

    Google Scholar 

  90. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    CAS  PubMed  Google Scholar 

  91. O’Rahilly S . Human genetics illuminates the paths to metabolic disease. Nature 2009; 462: 307–314.

    PubMed  Google Scholar 

  92. Rolls ET . Brain mechanisms underlying flavour and appetite. Phil Trans Roy Soc Lond B 2006; 361: 1123–1136.

    Google Scholar 

  93. Rolls ET . Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav 2005; 85: 45–56.

    CAS  PubMed  Google Scholar 

  94. Munzberg H, Myers MG . Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 2005; 8: 566–570.

    PubMed  Google Scholar 

  95. Cummings DE, Overduin J . Gastrointestinal regulation of food intake. J Clin Invest 2007; 117: 13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Buck L . Smell and taste: the chemical senses. In: Kandel ER, Schwartz JH, Jessel TH (eds). Principles of Neural Science, 4 edn. McGraw-Hill: New York, 2000, pp 625–647.

    Google Scholar 

  97. Rolls ET . Smell, taste, texture and temperature multimodal representations in the brain, and their relevance to the control of appetite. Nutr Rev 2004; 62: 193–204.

    Google Scholar 

  98. Rolls ET, McCabe C . Enhanced affective brain representations of chocolate in cravers vs non-cravers. Eur J Neurosci 2007; 26: 1067–1076.

    PubMed  Google Scholar 

  99. Beaver JD, Lawrence AD, Ditzhuijzen Jv, Davis MH, Woods A, Calder AJ . Individual differences in reward drive predict neural responses to images of food. J Neurosci 2006; 26: 5160–5166.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schachter S . Importance of cognitive control in obesity. Am Psychol 1971; 26: 129–144.

    CAS  PubMed  Google Scholar 

  101. Rodin J . The role of perception of internal and external signals in the regulation of feeding in overweight and non-obese individuals. Dahlem Konferenzen Life Sci Res Report 1976; 2: 265–281.

    Google Scholar 

  102. Kral TV, Rolls BJ . Energy density and portion size: their independent and combined effects on energy intake. Physiol Behav 2004; 82: 131–138.

    CAS  PubMed  Google Scholar 

  103. Hunt JN, Stubbs DF . The volume and energy content of meals as determinants of gastric emptying. J Physiol 1975; 245: 209–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hunt JN . A possible relation between the regulation of gastric emptying and food intake. Am J Physiol 1980; 239: G1–G4.

    CAS  PubMed  Google Scholar 

  105. Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 2002; 10: 478–488.

    CAS  PubMed  Google Scholar 

  106. Avena NM, Hoebel BG . Amphetamine-sensitised rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacol Biochem Behav 2003; 74: 635–639.

    CAS  PubMed  Google Scholar 

  107. Avena NM, Hoebel BG . A diet promoting sugar dependency causes behavioural cross-sensitisation to a low dose of amphetamine. Neuroscience 2003; 122: 17–20.

    CAS  PubMed  Google Scholar 

  108. Spangler R, Wittkowski KM, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF . Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Mol Brain Res 2004; 124: 134–142.

    CAS  PubMed  Google Scholar 

  109. Corwin RL, Buda-Levin A . Behavioral models of binge-type eating. Physiol Behav 2004; 82: 123–130.

    CAS  PubMed  Google Scholar 

  110. Berlin H, Rolls ET, Kischka U . Impulsivity, time perception, emotion, and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 2004; 127: 1108–1126.

    CAS  PubMed  Google Scholar 

  111. Berlin H, Rolls ET, Iversen SD . Borderline Personality Disorder, impulsivity and the orbitofrontal cortex. Am J Psychiatry 2005; 162: 2360–2373.

    PubMed  Google Scholar 

  112. Cools R, Blackwell A, Clark L, Menzies L, Cox S, Robbins TW . Tryptophan depletion disrupts the motivational guidance of goal-directed behavior as a function of trait impulsivity. Neuropsychopharmacology 2005; 30: 1362–1373.

    CAS  PubMed  Google Scholar 

  113. Crews FT, Boettiger CA . Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 2009; 93: 237–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Barson JR, Karatayev O, Chang GQ, Johnson DF, Bocarsly ME, Hoebel BG et al. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs. Alcohol (Fayetteville, NY) 2009; 43: 433–441.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Medical Research Council. The participation of many colleagues in the studies cited is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E T Rolls.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolls, E. Taste, olfactory and food texture reward processing in the brain and obesity. Int J Obes 35, 550–561 (2011). https://doi.org/10.1038/ijo.2010.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.155

Keywords

This article is cited by

Search

Quick links