Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of the elemental composition of newborn blood spots using sector-field inductively coupled plasma-mass spectrometry

Abstract

We developed extraction and analysis protocols for element detection in neonatal blood spots (NBSs) using sector-field inductively coupled plasma-mass spectrometry (SF-ICP-MS). A 5% (v/v) nitric acid element extraction protocol was optimized and used to simultaneously measure 28 elements in NBS card filter paper and 150 NBSs. NBS element concentrations were corrected for filter paper background contributions estimated from measurements in samples obtained from either unspotted or spotted NBS cards. A lower 95% uncertainty limit (UL) that accounted for ICP-MS method, filter paper element concentration, and element recovery uncertainties was calculated by standard methods for each individual's NBS element concentration. Filter paper median element levels were highly variable within and between lots for most elements. After accounting for measurement uncertainties, 11 elements (Ca, Cs, Cu, Fe, K, Mg, Na, P, Rb, S, and Zn) had lower 95% ULs>0 ng/spot with estimated concentrations ranging from 0.05 to >50,000 ng/spot in ≥50% of NBS samples in both correction methods. In a NBS sample minority, Li, Cd, Cs, Cr, Ni, Mo, and Pb had estimated concentrations ≥20-fold higher than the respective median level. Taking measurement uncertainties into account, this assay could be used for semiquantitative newborn blood element measurement and for the detection of individuals exposed to supraphysiologic levels of some trace elements. Adequate control of filter paper element contributions remains the primary obstacle to fully quantitative element measurement in newborn blood using NBSs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

Al:

aluminum

Ba:

barium

Ca:

calcium

Cd:

cadmium

Ce:

cerium

Co:

cobalt

Cr:

chromium

Cs:

Cesium

Cu:

copper

CV:

percent coefficient of variation

Fe:

iron

K:

potassium

MDH:

Minnesota Department of Health; Mg, magnesium

Mn:

maganese

Na:

sodium

NBS:

neonatal blood spot

ng:

nanograms

Ni:

nickel

P:

phosphorous

Pb:

lead

Rb:

rubidium

Sb:

antimony

SF-ICP-MS:

sector-field inductively coupled plasma-mass spectrometry

Sr:

strontium

SD:

standard deviation

Ti:

titanium

Tl:

thallium

V:

vanadium

WSLH:

Wisconsin State Laboratory of Hygiene

Zn:

zinc

References

  • Adam B.W., Alexander J.R., Smith S.J., Chace D.H., Loeber J.G., and Elvers L.H., et al. Recoveries of phenylalanine from two sets of dried-blood-spot reference materials: prediction from hematocrit, spot volume, and paper matrix. Clin Chem 2000: 46 (1): 126–128.

    CAS  PubMed  Google Scholar 

  • Barbany E., Bergdahl I.A., Schutz A., Skerfving S., and Oskarsson A. Inductively coupled plasma mass spectrometry for direct multi-element analysis of diluted blood and serum. J Anal At Spectrom 1997: 12: 1005–1009.

    Article  Google Scholar 

  • Bellinger D.C. Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol 73 2005: (6): 409–420.

    Article  CAS  Google Scholar 

  • Beyersmann D. Effects of carcinogenic metals on gene expression. Toxicol Lett 2002: 127 (1–3): 63–68.

    Article  CAS  Google Scholar 

  • Bizzarro M.J., Colson E., and Ehrenkranz R.A. Differential diagnosis and management of anemia in the newborn. Pediatr Clin North Am 51 2004: (4): 1087–1107, xi.

    Article  Google Scholar 

  • Bocca B., Alimonti A., Petrucci F., Violante N., Sancesario G., and Forte G., et al. Quantification of trace elements by sector field inductively coupled plasma mass spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson's disease. Spectrochim Acta B 2004: 59: 559–566.

    Article  Google Scholar 

  • Bolann B.J., Rahil-Khazen R., Henriksen H., Isrenn R., and Ulvik R.J. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory. Scand J Clin Lab Invest 2007: 67 (4): 353–366.

    Article  CAS  Google Scholar 

  • Carter G.F. The paper punched disc technique for lead in blood samples with abnormal haemoglobin values. Br J Ind Med 1978: 35 (3): 235–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri S.N., Butala S.J., Ball R.W., and Braniff C.T. Pilot study for utilization of dried blood spots for screening of lead, mercury and cadmium in newborns. J Expo Sci Environ Epidemiol 2008: 19 (3): 298–316.

    Article  Google Scholar 

  • Cizdziel J.V. Determination of lead in blood by laser ablation ICP-TOF-MS analysis of blood spotted and dried on filter paper: a feasibility study. Anal Bioanal Chem 2007: 388 (3): 603–611.

    Article  CAS  Google Scholar 

  • Desoize B. Metals and metal compounds in carcinogenesis. In Vivo 2003: 17 (6): 529–539.

    CAS  PubMed  Google Scholar 

  • Giles J.J., and Bannigan J.G. Teratogenic and developmental effects of lithium. Curr Pharm Des 2006: 12 (12): 1531–1541.

    Article  CAS  Google Scholar 

  • GE Healthcare. Neonatal screening simple spot check. Available at http://www.whatman.com/NeonatalScreeningProducts.aspx accessed 18 February 2010 2009.

  • Goulle J.P., Mahieu L., Castermant J., Neveu N., Bonneau L., and Laine G., et al. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci Int 2005: 153 (1): 39–44.

    Article  CAS  Google Scholar 

  • Guthrie R., and Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963: 32: 338–343.

    CAS  PubMed  Google Scholar 

  • Heitland P., and Koster H.D. 2006a Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta 365 (1–2): 310–318.

    Article  CAS  Google Scholar 

  • Heitland P., and Koster H.D. 2006b Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS. J Trace Elem Med Biol 20 (4): 253–262.

    Article  CAS  Google Scholar 

  • Holub M., Tuschl K., Ratschmann R., Strnadova K.A., Muhl A., and Heinze G., et al. Influence of hematocrit and localisation of punch in dried blood spots on levels of amino acids and acylcarnitines measured by tandem mass spectrometry. Clin Chim Acta 2006: 373 (1–2): 27–31.

    Article  CAS  Google Scholar 

  • Jarup L. Hazards of heavy metal contamination. Br Med Bull 2003: 68: 167–182.

    Article  Google Scholar 

  • Kayiran S.M., Ozbek N., Turan M., and Gurakan B. Significant differences between capillary and venous complete blood counts in the neonatal period. Clin Lab Haematol 2003: 25 (1): 9–16.

    Article  CAS  Google Scholar 

  • Krachler M. Environmental applications of single collector high resolution ICP-MS. J Environ Monit 2007: 9 (8): 790–804.

    Article  CAS  Google Scholar 

  • Li W., and Tse F.L.S. Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Clin Chem 2010: 24: 49–65.

    Google Scholar 

  • McElroy J.A., Shafer M.M., Gangnon R.E., Crouch L.A., and Newcomb P.A. Urinary lead exposure and breast cancer risk in a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2008: 17 (9): 2311–2317.

    Article  CAS  Google Scholar 

  • McElroy J.A., Shafer M.M., Hampton J.M., and Newcomb P.A. Predictors of urinary cadmium levels in adult females. Sci Total Environ 2007: 382 (2–3): 214–223.

    Article  CAS  Google Scholar 

  • Mei J.V., Alexander J.R., Adam B.W., and Hannon W.H. Use of filter paper for the collection and analysis of human whole blood specimens. J Nutr 2001: 131 (5): 1631S–1636S.

    Article  CAS  Google Scholar 

  • Muniz C.S., Fernandez-Martin J.L., Marchante-Gayon J.M., Garcia Alonso J.I., Cannata-Andia J.B., and Sanz-Medel A. Reference values for trace and ultratrace elements in human serum determined by double-focusing ICP-MS. Biol Trace Elem Res 2001: 82 (1–3): 259–272.

    Article  CAS  Google Scholar 

  • O’Broin S. Influence of hematocrit on quantitative analysis of “blood spots” on filter paper. Clin Chem 1993: 39 (6): 1354–1355.

    PubMed  Google Scholar 

  • Olshan A.F. Meeting report: the use of newborn blood spots in environmental research: opportunities and challenges. Environ Health Perspect 2007: 115 (12): 1767–1779.

    Article  Google Scholar 

  • Pesch B., Haerting J., Ranft U., Klimpel A., Oelschlagel B., and Schill W. Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany. MURC Study Group. Multicenter urothelial and renal cancer study. Int J Epidemiol 2000: 29 (6): 1014–1024.

    Article  CAS  Google Scholar 

  • Pisonero J.F.B., and Gunther D. Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis. J Anal At Spectrom 2009: 24: 1145–1160).

    Article  CAS  Google Scholar 

  • Rodushkin I., Odman F., Olofsson R., and Axelsson M.D. Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J Anal At Spectrom 2000: 15: 937–944.

    Article  CAS  Google Scholar 

  • SAS Institute. 2009 SAS 9.1 Documentation. SAS Institute.

  • Schonfeld D.J., Cullen M.R., Rainey P.M., Berg A.T., Brown D.R., and Hogan J.C., et al. Screening for lead poisoning in an urban pediatric clinic using samples obtained by fingerstick. Pediatrics 1994: 94 (2 Pt 1): 174–179.

    CAS  Google Scholar 

  • Schwartz J. Low-level lead exposure and children's IQ: a meta-analysis and search for a threshold. Environ Res 1994: 65 (1): 42–55.

    Article  CAS  Google Scholar 

  • Seiler H.G., Sigel A., and Sigel H. Handbook on Metals in Clinical and Analytical Chemistry. M. Dekker, New York, 1994. xx, 753 p.

    Google Scholar 

  • Shafer M.M., and Overdier J.T. Analysis of surface waters for trace elements by inductively-coupled plasma mass spectrometry. In: Lake Michigan Mass Balance Study (LMMB) Methods Compendium, Vol. 3: Metals, Conventionals, Radiochemistry, and Biomonitoring Sample Analysis Techniques. US EPA 905 R 97 012c, June 1997. http://www.epa.gov/glnpo/lmmb/methods/index.html.

  • Shafer M.M., Overdier J.T., Ramsl P.C., Teschler-Nicola M., and Farrell P.M. Enhanced methods for assessment of the trace element composition of Iron Age bone. Sci Total Environ 2008: 401 (1–3): 144–161.

    Article  CAS  Google Scholar 

  • Silbergeld E.K. Facilitative mechanisms of lead as a carcinogen. Mutat Res 2003: 533 (1–2): 121–133.

    Article  CAS  Google Scholar 

  • Smith A.H., Marshall G., Yuan Y., Ferreccio C., Liaw J., and von Ehrenstein O., et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 2006: 114 (8): 1293–1296.

    Article  CAS  Google Scholar 

  • Taylor B.N, and Kuyatt C.E National Institute of Standards and Technology (U.S.). Guidelines for evaluating and expressing the uncertainty of NIST measurement results [microform]. Gaithersburg, MD: U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology 1994.

  • Verebey K., Rosen J.F., Schonfeld D.J., Carriero D., Eng Y.M., and Deutsch J., et al. Blood collection and analytical considerations in blood lead screening in children. Clin Chem 1995: 41 (3): 469–470.

    CAS  PubMed  Google Scholar 

  • Wang S.T., and Demshar H.P. Determination of blood lead in dried blood-spot specimens by Zeeman-effect background corrected atomic absorption spectrometry. Analyst 1992: 117 (6): 959–961.

    Article  CAS  Google Scholar 

  • Waterland R.A., and Michels K.B. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007: 27: 363–388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant T32 CA099936 and the Children's Cancer Research Fund, Minneapolis, MN, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A Ross.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, E., Johnson, K., Shafer, M. et al. Characterization of the elemental composition of newborn blood spots using sector-field inductively coupled plasma-mass spectrometry. J Expo Sci Environ Epidemiol 21, 355–364 (2011). https://doi.org/10.1038/jes.2010.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2010.19

Keywords

This article is cited by

Search

Quick links