Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis

A Corrigendum to this article was published on 26 June 2009

Abstract

Prevention of neonatal infection-related mortality represents a significant global challenge particularly in the vulnerable premature population. The increased risk of death from sepsis is likely due to the specific immune deficits found in the neonate as compared to the adult. Stimulation of the neonatal immune system to prevent and/or treat infection has been attempted in the past largely without success. In this review, we identify some of the known deficits in the neonatal immune system and their clinical impact, summarize previous attempts at immunomodulation and the outcomes of these interventions, and discuss the potential of novel immunomodulatory therapies to improve neonatal sepsis outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Lawn JE, Cousens S, Zupan J . 4 million neonatal deaths: when? Where? Why? Lancet 2005; 365 (9462): 891–900.

    Article  PubMed  Google Scholar 

  2. Marodi L . Innate cellular immune responses in newborns. Clin Immunol 2006; 118 (2–3): 137–144.

    Article  CAS  PubMed  Google Scholar 

  3. Martin GS, Mannino DM, Eaton S, Moss M . The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348 (16): 1546–1554.

    Article  PubMed  Google Scholar 

  4. Barton P, Kalil AC, Nadel S, Goldstein B, Okhuysen-Cawley R, Brilli RJ et al. Safety, pharmacokinetics, and pharmacodynamics of drotrecogin alfa (activated) in children with severe sepsis. Pediatrics 2004; 113 (1 Part 1): 7–17.

    Article  PubMed  Google Scholar 

  5. Martinot A, Leclerc F, Cremer R, Leteurtre S, Fourier C, Hue V . Sepsis in neonates and children: definitions, epidemiology, and outcome. Pediatr Emerg Care 1997; 13 (4): 277–281.

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence RM, Pane CA . Human breast milk: current concepts of immunology and infectious diseases. Curr Probl Pediatr Adolesc Health Care 2007; 37 (1): 7–36.

    Article  PubMed  Google Scholar 

  7. Adkins B, Leclerc C, Marshall-Clarke S . Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004; 4 (7): 553–564.

    Article  CAS  PubMed  Google Scholar 

  8. Siegrist CA . The challenges of vaccine responses in early life: selected examples. J Comp Pathol 2007; 137 (Suppl 1): S4–S9.

    Article  CAS  PubMed  Google Scholar 

  9. Hanekom WA . The immune response to BCG vaccination of newborns. Ann N Y Acad Sci 2005; 1062: 69–78.

    Article  CAS  PubMed  Google Scholar 

  10. Marchant A, Goldman M . T cell-mediated immune responses in human newborns: ready to learn? Clin Exp Immunol 2005; 141 (1): 10–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Byun HJ, Jung WW, Lee JB, Chung HY, Sul D, Kim SJ et al. An evaluation of the neonatal immune system using a listeria infection model. Neonatology 2007; 92 (2): 83–90.

    Article  CAS  PubMed  Google Scholar 

  12. Levy O . Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 2007; 7 (5): 379–390.

    Article  CAS  PubMed  Google Scholar 

  13. Nonnecke BJ, Waters WR, Foote MR, Palmer MV, Miller BL, Johnson TE et al. Development of an adult-like cell-mediated immune response in calves after early vaccination with Mycobacterium bovis bacillus Calmette-Guerin. J Dairy Sci 2005; 88 (1): 195–210.

    Article  CAS  PubMed  Google Scholar 

  14. Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M et al. Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 2003; 111 (11): 1747–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scumpia PO, McAuliffe PF, O’Malley KA, Ungaro R, Uchida T, Matsumoto T et al. CD11c+ dendritic cells are required for survival in murine polymicrobial sepsis. J Immunol 2005; 175 (5): 3282–3286.

    Article  CAS  PubMed  Google Scholar 

  16. Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol 2002; 168 (5): 2493–2500.

    Article  CAS  PubMed  Google Scholar 

  17. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg Jr RE, Hui JJ, Chang KC et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 2001; 166 (11): 6952–6963.

    Article  CAS  PubMed  Google Scholar 

  18. Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 2000; 1 (6): 496–501.

    Article  CAS  PubMed  Google Scholar 

  19. Scumpia PO, Delano MJ, Kelly-Scumpia KM, Weinstein JS, Wynn JL, Winfield RD et al. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood 2007; 110 (10): 3673–3681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petrova A, Mehta R . Dysfunction of innate immunity and associated pathology in neonates. Indian J Pediatr 2007; 74 (2): 185–191.

    Article  PubMed  Google Scholar 

  21. Mohan P, Brocklehurst P . Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropaenia. Cochrane Database Syst Rev 2003; (4): CD003956.

  22. Carr R, Modi N, Dore C . G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev 2003; (3): CD003066.

  23. DeJonge M, Burchfield D, Bloom B, Duenas M, Walker W, Polak M et al. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J Pediatr 2007; 151 (3): 260–265, 5 e1.

    Article  CAS  PubMed  Google Scholar 

  24. Benjamin Jr DK, Schelonka R, White R, Holley Jr HP, Bifano E, Cummings J et al. A blinded, randomized, multicenter study of an intravenous Staphylococcus aureus immune globulin. J Perinatol 2006; 26 (5): 290.

    Article  CAS  PubMed  Google Scholar 

  25. Ohlsson A, Lacy JB . Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev 2004; (1): CD000361.

  26. Ohlsson A, Lacy JB . Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev 2004; (1): CD001239.

  27. Lin HC, Su BH, Chen AC, Lin TW, Tsai CH, Yeh TF et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 2005; 115 (1): 1–4.

    Article  PubMed  Google Scholar 

  28. el-Mohandes AE, Picard MB, Simmens SJ, Keiser JF . Use of human milk in the intensive care nursery decreases the incidence of nosocomial sepsis. J Perinatol 1997; 17 (2): 130–134.

    CAS  PubMed  Google Scholar 

  29. Goldstein B, Nadel S, Peters M, Barton R, Machado F, Levy H et al. ENHANCE: results of a global open-label trial of drotrecogin alfa (activated) in children with severe sepsis. Pediatr Crit Care Med 2006; 7 (3): 200–211.

    Article  PubMed  Google Scholar 

  30. Poindexter BB, Ehrenkranz RA, Stoll BJ, Wright LL, Poole WK, Oh W et al. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics 2004; 113 (5): 1209–1215.

    Article  PubMed  Google Scholar 

  31. Haque K, Mohan P . Pentoxifylline for neonatal sepsis. Cochrane Database Syst Rev 2003; (4): CD004205.

  32. Lauterbach R, Pawlik D, Kowalczyk D, Ksycinski W, Helwich E, Zembala M . Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med 1999; 27 (4): 807–814.

    Article  CAS  PubMed  Google Scholar 

  33. Adhikari M, Coovadia HM, Gaffin SL, Brock-Utne JG, Marivate M, Pudifin DJ . Septicaemic low birthweight neonates treated with human antibodies to endotoxin. Arch Dis Child 1985; 60 (4): 382–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmad A, Laborada G, Bussel J, Nesin M . Comparison of recombinant granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colony-stimulating factor and placebo for treatment of septic preterm infants. Pediatr Infect Dis J 2002; 21 (11): 1061–1065.

    Article  PubMed  Google Scholar 

  35. Bilgin K, Yaramis A, Haspolat K, Tas MA, Gunbey S, Derman O . A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics 2001; 107 (1): 36–41.

    Article  CAS  PubMed  Google Scholar 

  36. Carr R, Modi N, Dore CJ, El-Rifai R, Lindo D . A randomized, controlled trial of prophylactic granulocyte-macrophage colony-stimulating factor in human newborns less than 32 weeks gestation. Pediatrics 1999; 103 (4 Part 1): 796–802.

    Article  CAS  PubMed  Google Scholar 

  37. Kucukoduk S, Sezer T, Yildiran A, Albayrak D . Randomized, double-blinded, placebo-controlled trial of early administration of recombinant human granulocyte colony-stimulating factor to non-neutropenic preterm newborns between 33 and 36 weeks with presumed sepsis. Scand J Infect Dis 2002; 34 (12): 893–897.

    Article  CAS  PubMed  Google Scholar 

  38. Miura E, Procianoy RS, Bittar C, Miura CS, Miura MS, Mello C et al. A randomized, double-masked, placebo-controlled trial of recombinant granulocyte colony-stimulating factor administration to preterm infants with the clinical diagnosis of early-onset sepsis. Pediatrics 2001; 107 (1): 30–35.

    Article  CAS  PubMed  Google Scholar 

  39. Sandberg K, Fasth A, Berger A, Eibl M, Isacson K, Lischka A et al. Preterm infants with low immunoglobulin G levels have increased risk of neonatal sepsis but do not benefit from prophylactic immunoglobulin G. J Pediatr 2000; 137 (5): 623–628.

    Article  CAS  PubMed  Google Scholar 

  40. Bloom B, Schelonka R, Kueser T, Walker W, Jung E, Kaufman D et al. Multicenter study to assess safety and efficacy of INH-A21, a donor-selected human staphylococcal immunoglobulin, for prevention of nosocomial infections in very low birth weight infants. Pediatr Infect Dis J 2005; 24 (10): 858–866.

    Article  PubMed  Google Scholar 

  41. Shenoi A, Nagesh NK, Maiya PP, Bhat SR, Subba Rao SD . Multicenter randomized placebo controlled trial of therapy with intravenous immunoglobulin in decreasing mortality due to neonatal sepsis. Indian Pediatr 1999; 36 (11): 1113–1118.

    CAS  PubMed  Google Scholar 

  42. Lassiter HA, Robinson TW, Brown MS, Hall DC, Hill HR, Christensen RD . Effect of intravenous immunoglobulin G on the deposition of immunoglobulin G and C3 onto type III group B streptococcus and Escherichia coli K1. J Perinatol 1996; 16 (5): 346–351.

    CAS  PubMed  Google Scholar 

  43. Atici A, Satar M, Karabay A, Yilmaz M . Intravenous immunoglobulin for prophylaxis of nosocomial sepsis. Indian J Pediatr 1996; 63 (4): 517–521.

    Article  CAS  PubMed  Google Scholar 

  44. Haque KN, Remo C, Bahakim H . Comparison of two types of intravenous immunoglobulins in the treatment of neonatal sepsis. Clin Exp Immunol 1995; 101 (2): 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weisman LE, Stoll BJ, Kueser TJ, Rubio TT, Frank CG, Heiman HS et al. Intravenous immune globulin prophylaxis of late-onset sepsis in premature neonates. J Pediatr 1994; 125 (6 Part 1): 922–930.

    Article  CAS  PubMed  Google Scholar 

  46. Weisman LE, Stoll BJ, Kueser TJ, Rubio TT, Frank CG, Heiman HS et al. Intravenous immune globulin therapy for early-onset sepsis in premature neonates. J Pediatr 1992; 121 (3): 434–443.

    Article  CAS  PubMed  Google Scholar 

  47. Clapp DW, Kliegman RM, Baley JE, Shenker N, Kyllonen K, Fanaroff AA et al. Use of intravenously administered immune globulin to prevent nosocomial sepsis in low birth weight infants: report of a pilot study. J Pediatr 1989; 115 (6): 973–978.

    Article  CAS  PubMed  Google Scholar 

  48. Haque KN, Zaidi MH, Haque SK, Bahakim H, el-Hazmi M, el-Swailam M . Intravenous immunoglobulin for prevention of sepsis in preterm and low birth weight infants. Pediatr Infect Dis 1986; 5 (6): 622–625.

    Article  CAS  PubMed  Google Scholar 

  49. Kylat RI, Ohlsson A . Recombinant human activated protein C for severe sepsis in neonates. Cochrane Database Syst Rev 2006; (2): CD005385.

  50. Nadel S, Goldstein B, Williams MD, Dalton H, Peters M, Macias WL et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet 2007; 369 (9564): 836–843.

    Article  CAS  PubMed  Google Scholar 

  51. Ozdemir D, Uysal N, Tugyan K, Gonenc S, Acikgoz O, Aksu I et al. The effect of melatonin on endotoxemia-induced intestinal apoptosis and oxidative stress in infant rats. Intensive Care Med 2007; 33 (3): 511–516.

    Article  CAS  PubMed  Google Scholar 

  52. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P et al. Effects of melatonin treatment in septic newborns. Pediatr Res 2001; 50 (6): 756–760.

    Article  CAS  PubMed  Google Scholar 

  53. Novak F, Heyland DK, Avenell A, Drover JW, Su X . Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 2002; 30 (9): 2022–2029.

    Article  CAS  PubMed  Google Scholar 

  54. Murray SM, Pindoria S . Nutrition support for bone marrow transplant patients. Cochrane Database Syst Rev 2002; (2): CD002920.

  55. Houdijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCamish MA et al. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 1998; 352 (9130): 772–776.

    Article  CAS  PubMed  Google Scholar 

  56. Vaughn P, Thomas P, Clark R, Neu J . Enteral glutamine supplementation and morbidity in low birth weight infants. J Pediatr 2003; 142 (6): 662–668.

    Article  CAS  PubMed  Google Scholar 

  57. Tubman TR, Thompson SW, McGuire W . Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2008; (1): CD001457.

  58. Hanson LA, Korotkova M . The role of breastfeeding in prevention of neonatal infection. Semin Neonatol 2002; 7 (4): 275–281.

    Article  PubMed  Google Scholar 

  59. Newburg DS, Walker WA . Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 2007; 61 (1): 2–8.

    Article  CAS  PubMed  Google Scholar 

  60. Dewey KG, Heinig MJ, Nommsen-Rivers LA . Differences in morbidity between breast-fed and formula-fed infants. J Pediatr 1995; 126 (5 Part 1): 696–702.

    Article  CAS  PubMed  Google Scholar 

  61. Howie PW, Forsyth JS, Ogston SA, Clark A, Florey CD . Protective effect of breast feeding against infection. BMJ 1990; 300 (6716): 11–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hylander MA, Strobino DM, Dhanireddy R . Human milk feedings and infection among very low birth weight infants. Pediatrics 1998; 102 (3): E38.

    Article  CAS  PubMed  Google Scholar 

  63. Schanler RJ, Shulman RJ, Lau C . Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 1999; 103 (6 Part 1): 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  64. Hooper LV . Bacterial contributions to mammalian gut development. Trends Microbiol 2004; 12 (3): 129–134.

    Article  CAS  PubMed  Google Scholar 

  65. Schumann A, Nutten S, Donnicola D, Comelli EM, Mansourian R, Cherbut C et al. Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol Genomics 2005; 23 (2): 235–245.

    Article  CAS  PubMed  Google Scholar 

  66. Hooper LV, Gordon JI . Commensal host–bacterial relationships in the gut. Science 2001; 292 (5519): 1115–1118.

    Article  CAS  PubMed  Google Scholar 

  67. Pohjavuori E, Viljanen M, Korpela R, Kuitunen M, Tiittanen M, Vaarala O et al. Lactobacillus GG effect in increasing IFN-gamma production in infants with cow′s milk allergy. J Allergy Clin Immunol 2004; 114 (1): 131–136.

    Article  CAS  PubMed  Google Scholar 

  68. Marschan E, Kuitunen M, Kukkonen K, Poussa T, Sarnesto A, Haahtela T et al. Probiotics in infancy induce protective immune profiles that are characteristic for chronic low-grade inflammation. Clin Exp Allergy 2008; 38 (4): 611–618.

    Article  CAS  PubMed  Google Scholar 

  69. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R . Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118 (2): 229–241.

    Article  CAS  PubMed  Google Scholar 

  70. Savidge TC, Newman PG, Pan WH, Weng MQ, Shi HN, McCormick BA et al. Lipopolysaccharide-induced human enterocyte tolerance to cytokine-mediated interleukin-8 production may occur independently of TLR-4/MD-2 signaling. Pediatr Res 2006; 59 (1): 89–95.

    Article  CAS  PubMed  Google Scholar 

  71. Martin CR, Walker WA . Intestinal immune defences and the inflammatory response in necrotising enterocolitis. Semin Fetal Neonatal Med 2006; 11 (5): 369–377.

    Article  PubMed  Google Scholar 

  72. Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 2006; 177 (5): 3273–3282.

    Article  CAS  PubMed  Google Scholar 

  73. Gribar SC, Anand RJ, Sodhi CP, Hackam DJ . The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc Biol 2008; 83 (3): 493–498.

    Article  CAS  PubMed  Google Scholar 

  74. Madara J . Building an intestine—architectural contributions of commensal bacteria. N Engl J Med 2004; 351 (16): 1685–1686.

    Article  CAS  PubMed  Google Scholar 

  75. Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudensky B, Caplan M et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 2005; 147 (2): 192–196.

    Article  PubMed  Google Scholar 

  76. Dani C, Biadaioli R, Bertini G, Martelli E, Rubaltelli FF . Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol Neonate 2002; 82 (2): 103–108.

    Article  CAS  PubMed  Google Scholar 

  77. Alfaleh K, Bassler D . Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2008; (1): CD005496.

  78. Martin R, Heilig HG, Zoetendal EG, Jimenez E, Fernandez L, Smidt H et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 2007; 158 (1): 31–37.

    Article  PubMed  Google Scholar 

  79. Phadke SM, Deslouches B, Hileman SE, Montelaro RC, Wiesenfeld HC, Mietzner TA . Antimicrobial peptides in mucosal secretions: the importance of local secretions in mitigating infection. J Nutr 2005; 135 (5): 1289–1293.

    Article  CAS  PubMed  Google Scholar 

  80. LeBouder E, Rey-Nores JE, Raby AC, Affolter M, Vidal K, Thornton CA et al. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. J Immunol 2006; 176 (6): 3742–3752.

    Article  CAS  PubMed  Google Scholar 

  81. Tok D, Ilkgul O, Bengmark S, Aydede H, Erhan Y, Taneli F et al. Pretreatment with pro- and synbiotics reduces peritonitis-induced acute lung injury in rats. J Trauma 2007; 62 (4): 880–885.

    Article  PubMed  Google Scholar 

  82. Weighardt H, Feterowski C, Veit M, Rump M, Wagner H, Holzmann B . Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J Immunol 2000; 165 (8): 4537–4543.

    Article  CAS  PubMed  Google Scholar 

  83. Feterowski C, Weighardt H, Emmanuilidis K, Hartung T, Holzmann B . Immune protection against septic peritonitis in endotoxin-primed mice is related to reduced neutrophil apoptosis. Eur J Immunol 2001; 31 (4): 1268–1277.

    Article  CAS  PubMed  Google Scholar 

  84. Feterowski C, Novotny A, Kaiser-Moore S, Muhlradt PF, Rossmann-Bloeck T, Rump M et al. Attenuated pathogenesis of polymicrobial peritonitis in mice after TLR2 agonist pre-treatment involves ST2 up-regulation. Int Immunol 2005; 17 (8): 1035–1046.

    Article  CAS  PubMed  Google Scholar 

  85. Levin M, Quint PA, Goldstein B, Barton P, Bradley JS, Shemie SD et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 2000; 356 (9234): 961–967.

    Article  CAS  PubMed  Google Scholar 

  86. Marshall JC . Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov 2003; 2 (5): 391–405.

    Article  CAS  PubMed  Google Scholar 

  87. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388 (6640): 394–397.

    Article  CAS  PubMed  Google Scholar 

  88. Kawai T, Akira S . TLR signaling. Semin Immunol 2007; 19 (1): 24–32.

    Article  CAS  PubMed  Google Scholar 

  89. Doyle SE, O′Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT et al. Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 2004; 199 (1): 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Foster SL, Hargreaves DC, Medzhitov R . Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007; 447 (7147): 972–978.

    Article  CAS  PubMed  Google Scholar 

  91. Kanzler H, Barrat FJ, Hessel EM, Coffman RL . Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007; 13 (5): 552–559.

    Article  CAS  PubMed  Google Scholar 

  92. De Wit D, Tonon S, Olislagers V, Goriely S, Boutriaux M, Goldman M et al. Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J Autoimmun 2003; 21 (3): 277–281.

    Article  CAS  PubMed  Google Scholar 

  93. Yan SR, Qing G, Byers DM, Stadnyk AW, Al-Hertani W, Bortolussi R . Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide. Infect Immun 2004; 72 (3): 1223–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schaub B, Bellou A, Gibbons FK, Velasco G, Campo M, He H et al. TLR2 and TLR4 stimulation differentially induce cytokine secretion in human neonatal, adult, and murine mononuclear cells. J Interferon Cytokine Res 2004; 24 (9): 543–552.

    Article  CAS  PubMed  Google Scholar 

  95. Aksoy E, Albarani V, Nguyen M, Laes JF, Ruelle JL, De Wit D et al. Interferon regulatory factor 3-dependent responses to lipopolysaccharide are selectively blunted in cord blood cells. Blood 2007; 109 (7): 2887–2893.

    CAS  PubMed  Google Scholar 

  96. Sadeghi K, Berger A, Langgartner M, Prusa AR, Hayde M, Herkner K et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis 2007; 195 (2): 296–302.

    Article  CAS  PubMed  Google Scholar 

  97. Al-Hertani W, Yan SR, Byers DM, Bortolussi R . Human newborn polymorphonuclear neutrophils exhibit decreased levels of MyD88 and attenuated p38 phosphorylation in response to lipopolysaccharide. Clin Invest Med 2007; 30 (2): E44–E53.

    Article  CAS  PubMed  Google Scholar 

  98. Krumbiegel D, Zepp F, Meyer CU . Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells. Hum Immunol 2007; 68 (10): 813–822.

    Article  CAS  PubMed  Google Scholar 

  99. Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR . Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J Immunol 2004; 173 (7): 4627–4634.

    Article  CAS  PubMed  Google Scholar 

  100. Levy O . Innate immunity of the human newborn: distinct cytokine responses to LPS and other Toll-like receptor agonists. J Endotoxin Res 2005; 11 (2): 113–116.

    Article  CAS  PubMed  Google Scholar 

  101. Levy O, Suter EE, Miller RL, Wessels MR . Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood 2006; 108 (4): 1284–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hasko G, Cronstein BN . Adenosine: an endogenous regulator of innate immunity. Trends Immunol 2004; 25 (1): 33–39.

    Article  CAS  PubMed  Google Scholar 

  103. Sitkovsky M, Lukashev D . Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 2005; 5 (9): 712–721.

    Article  CAS  PubMed  Google Scholar 

  104. Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR . The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J Immunol 2006; 177 (3): 1956–1966.

    Article  CAS  PubMed  Google Scholar 

  105. Philbin VJ, Levy O . Immunostimulatory activity of Toll-like receptor 8 agonists towards human leucocytes: basic mechanisms and translational opportunities. Biochem Soc Trans 2007; 35 (Part 6): 1485–1491.

    Article  CAS  PubMed  Google Scholar 

  106. Ito S, Ishii KJ, Gursel M, Shirotra H, Ihata A, Klinman DM . CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection. J Immunol 2005; 174 (2): 777–782.

    Article  CAS  PubMed  Google Scholar 

  107. Pedras-Vasconcelos JA, Goucher D, Puig M, Tonelli LH, Wang V, Ito S et al. CpG oligodeoxynucleotides protect newborn mice from a lethal challenge with the neurotropic Tacaribe arenavirus. J Immunol 2006; 176 (8): 4940–4949.

    Article  CAS  PubMed  Google Scholar 

  108. Wynn JL, Scumpia PO, Delano MJ, O′Malley KA, Ungaro R, Abouhamze A et al. Increased mortality and altered immunity in neonatal sepsis produced by generalized peritonitis. Shock 2007; 28 (6): 675–683.

    CAS  PubMed  Google Scholar 

  109. Wynn JL, Scumpia PO, Winfield RD, Delano MJ, Kelly-Scumpia K, Barker T et al. Defective innate immunity predisposes murine neonates to poor sepsis outcome, but is reversed by TLR agonists. Blood 2008 Jun 30. [Epub ahead of print].

  110. Henneke P, Berner R . Interaction of neonatal phagocytes with group B streptococcus: recognition and response. Infect Immun 2006; 74 (6): 3085–3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Carr R . Neutrophil production and function in newborn infants. Br J Haematol 2000; 110 (1): 18–28.

    Article  CAS  PubMed  Google Scholar 

  112. Stoll BJ, Hansen NI, Higgins RD, Fanaroff AA, Duara S, Goldberg R et al. Very low birth weight preterm infants with early onset neonatal sepsis: the predominance of Gram-negative infections continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002 to 2003. Pediatr Infect Dis J 2005; 24 (7): 635–639.

    Article  PubMed  Google Scholar 

  113. Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol 2007; 50 (3): 652–683.

    Article  PubMed  Google Scholar 

  114. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 2000; 68 (12): 6883–6890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanghavi SK, Shankarappa R, Reinhart TA . Genetic analysis of Toll/Interleukin-1 Receptor (TIR) domain sequences from rhesus macaque Toll-like receptors (TLRs) 1 to 10 reveals high homology to human TLR/TIR sequences. Immunogenetics 2004; 56 (9): 667–674.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Wynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynn, J., Neu, J., Moldawer, L. et al. Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J Perinatol 29, 79–88 (2009). https://doi.org/10.1038/jp.2008.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.132

Keywords

This article is cited by

Search

Quick links