Elsevier

Laboratory Investigation

Volume 80, Issue 8, 1 August 2000, Pages 1233-1241
Laboratory Investigation

Article
Galectin-1 and Galectin-3 in Chronic Pancreatitis

https://doi.org/10.1038/labinvest.3780131Get rights and content
Under an Elsevier user license
open archive

Abstract

Galectin-1 and galectin-3 have important functions in cell-cell interactions, cell adhesion to extracellular matrix, the organization of extracellular matrix, and tissue remodeling. To assess their potential role in chronic pancreatitis (CP), we examined their expression by Northern blot analysis, in situ hybridization, immunohistochemistry, and Western blot analysis in normal and CP pancreatic tissues. Northern blot analysis revealed a 4.5-fold increase of galectin-1 mRNA (p < 0.01) and a 3.8-fold increase of galectin-3 mRNA (p < 0.01) in CP samples compared with normal controls. In situ hybridization analysis of normal pancreas indicated low abundance of galectin-1 mRNA in fibroblasts, whereas galectin-3 mRNA was moderately present in ductal cells. CP samples exhibited moderate to intense galectin-1 mRNA signals in fibroblasts, whereas galectin-3 mRNA signals were intense in the cells of ductular complexes and weak in the degenerating acinar cells. In addition, intense galectin-1 and galectin-3 mRNA signals were present in nerves of normal and CP samples. Immunohistochemistry showed a distribution pattern of galectin-1 and galectin-3 similar to that described for in situ hybridization. Relative quantification of galectin-1 and galectin-3 protein by immunoblotting revealed an increase of 3.2-fold and 3.0-fold, respectively, in CP compared with normal controls. There was a significant correlation between galectin-1 and fibrosis and between galectin-3 and fibrosis and the density of ductular complexes. Up-regulation of galectin-1 in fibroblasts and galectin-3 in ductular complexes suggests a role of these lectins in tissue remodeling in CP. Galectin-1 might participate in ECM changes, whereas galectin-3 seems to be involved in both ECM changes and ductular complex formation.

Cited by (0)

This work was supported in part by the DKF research grant, University of Bern, Switzerland, and SNF Grant 32–49494.96, Swiss National Foundation.