Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response

Abstract

Recently, we described that vaccination with allogeneic dendritic cells (DCs) pulsed with tumor cell lysate generated specific CD8+ T cell response in patients with B-cell chronic lymphocytic leukemia (B-CLL). In the present study, the potential of autologous DCs pulsed ex vivo with tumor cell lysates to stimulate antitumor immunity in patients with B-CLL in early stages was evaluated. Twelve patients at clinical stage 0–2 as per Rai were vaccinated intradermally up to eight times with a mean number of 7.4 × 106 DCs pulsed with B-CLL cell lysate. We observed a decrease of peripheral blood leukocytes and CD19+/CD5+ leukemic cells in five patients, three patients showed a stable disease and four patients progressed despite DC vaccination. A significant increase of specific cytotoxic CD8+ T lymphocytes against the leukemia-associated antigens RHAMM or fibromodulin was detected in four patients after DC vaccination. In patients with a clinical response, an increase of interleukin 12 (IL-12) serum levels and a decrease of the frequency of CD4+CD25+FOXP3+ T regulatory cells were observed. Taken together, the study demonstrated that vaccination with autologous DC in CLL patients is feasible and safe. Immunological and to some extend hematological responses could be noted, justifying further investigation on this immunotherapeutical approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wendtner CM, Ritgen M, Schweighofer CD, Fingerle-Rowson G, Campe H, Jäger G et al. Consolidation with alemtuzumab in patients with chronic lymphocytic leukemia (CLL) in first remission—experience on safety and efficacy within a randomized multicenter phase III trial of the German CLL Study Group (GCLLSG). Leukemia 2004; 18: 1093–1101.

    Article  CAS  Google Scholar 

  2. Moreton P, Kennedy B, Lucas G, Leach M, Rassam SM, Haynes A et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol 2005; 23: 2971–2979.

    Article  CAS  Google Scholar 

  3. Keating MJ, O’Brien S, Albitar M, Lerner S, Plunkett W, Giles F et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4079–4088.

    Article  CAS  Google Scholar 

  4. Khorana A, Bunn P, McLaughlin P, Vose J, Stewart C, Czuczman MS . A phase II multicenter study of CAMPATH-1H antibody in previously treated patients with nonbulky non-Hodgkin's lymphoma. Leuk Lymphoma 2001; 41: 77–87.

    Article  CAS  Google Scholar 

  5. Shanafelt TD, Call TG . Current approach to diagnosis and management of chronic lymphocytic leukemia. Mayo Clin Proc 2004; 79: 388–398.

    Article  Google Scholar 

  6. Dreger P, Montserrat E . Autologous and allogeneic stem cell transplantation for chronic lymphocytic leukemia. Leukemia 2002; 16: 985–992.

    Article  CAS  Google Scholar 

  7. Byrd JC, Stilgenbauer S, Flinn IW . Chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2004; 1: 163–183.

    Article  Google Scholar 

  8. Ziegler-Heitbrock HW, Schlag R, Flieger D, Thiel E . Favorable response of early stage B CLL patients to treatment with IFN-alpha 2. Blood 1989; 73: 1426–1430.

    CAS  Google Scholar 

  9. Schetelig J, Thiede C, Bornhauser M, Schwerdtfeger R, Kiehl M, Beyer J et al. Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. J Clin Oncol 2003; 21: 2747–2753.

    Article  CAS  Google Scholar 

  10. Orsini E, Guarini A, Chiaretti S, Mauro FR, Foa R . The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res 2003; 63: 4497–4506.

    CAS  Google Scholar 

  11. Goddard RV, Prentice AG, Copplestone JA, Kaminski ER . Generation in vitro of B-cell chronic lymphocytic leukaemia-proliferative and specific HLA class-II-restricted cytotoxic T-cell responses using autologous dendritic cells pulsed with tumour cell lysate. Clin Exp Immunol 2001; 126: 16–28.

    Article  CAS  Google Scholar 

  12. Hus I, Roliński J, Tabarkiewicz J, Wojas K, Bojarska-Junak A, Greiner J et al. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1621–1627.

    Article  CAS  Google Scholar 

  13. Giannopoulos K, Li L, Bojarska-Junak A, Rolinski J, Dmoszynska A, Hus I et al. Expression of RHAMM/CD168 and other tumor-associated antigens in patients with B-cell chronic lymphocytic leukemia. Int J Oncol 2006; 29: 95–103.

    CAS  Google Scholar 

  14. Greiner J, Li L, Ringhoffer M, Barth TF, Giannopoulos K, Guillaume P et al. Identification and characterization of epitopes of the receptor for hyaluronic acid mediated motility (RHAMM/CD168) recognized by CD8 positive T cells of HLA-A2 positive patients with acute myeloid leukemia. Blood 2005; 106: 938–945.

    Article  CAS  Google Scholar 

  15. Greiner J, Ringhoffer M, Simikopinko O, Szmaragowska A, Huebsch S, Maurer U et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol 2000; 28: 1413–1422.

    Article  CAS  Google Scholar 

  16. Schmidt SM, Schag K, Muller MR, Weck MM, Appel S, Kanz L et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003; 102: 571–576.

    Article  CAS  Google Scholar 

  17. Mayr C, Bund D, Schlee M, Moosmann A, Kofler DM, Hallek M et al. Fibromodulin as a novel tumor-associated antigen (TAA) in chronic lymphocytic leukemia (CLL) which allows expansion of specific CD8+ autologous T lymphocytes. Blood 2005; 105: 1566–1573.

    Article  CAS  Google Scholar 

  18. Thurner B, Röder C, Dieckmann D, Heuer M, Kruse M, Glaser A et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 1999; 223: 1–15.

    Article  CAS  Google Scholar 

  19. De Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003; 63: 12–17.

    CAS  Google Scholar 

  20. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 2006; 17: 563–570.

    Article  CAS  Google Scholar 

  21. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG . Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 2001; 166: 4254–4259.

    Article  CAS  Google Scholar 

  22. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24: 3089–3094.

    Article  CAS  Google Scholar 

  23. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 2003; 63: 2127–2133.

    CAS  Google Scholar 

  24. Höltl L, Zelle-Rieser C, Gander H, Papesh C, Ramoner R, Bartsch G et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 2002; 8: 3369–3376.

    Google Scholar 

  25. Wierecky J, Müller MR, Wirths S, Halder-Oehler E, Dörfel D, Schmidt SM et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 2006; 66: 5910–5918.

    Article  CAS  Google Scholar 

  26. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  Google Scholar 

  27. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002; 99: 1517–1526.

    Article  CAS  Google Scholar 

  28. Kufner S, Zitzelsberger H, Kroell T, Pelka-Fleischer R, Salem A, de Valle F et al. Leukemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with acute myeloid leukaemia: a methodological approach under serum-free culture conditions. Scand J Immunol 2005; 62: 86–98.

    Article  CAS  Google Scholar 

  29. Li L, Giannopoulos K, Reinhardt P, Tabarkiewicz J, Schmitt A, Greiner J et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol 2006; 28: 855–861.

    CAS  Google Scholar 

  30. Schmitt A, Reinhardt P, Hus I, Tabarkiewicz J, Rolinski J, Giannopoulos K et al. Large-scale generation of autologous dendritic cells for immunotherapy in patients with acute myeloid leukemia. Transfusion 2007; 47: 1588–1594.

    Article  Google Scholar 

  31. Schmitt A, Hus I, Schmitt M . Dendritic cell vaccines for patients with leukemias. Expert Rev Anticancer Ther 2007; 7: 275–283.

    Article  CAS  Google Scholar 

  32. Jonuleit H, Kühn U, Müller G, Steinbrink K, Paragnik L, Schmitt E et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27: 3135–3142.

    Article  CAS  Google Scholar 

  33. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    Article  CAS  Google Scholar 

  34. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ . Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004; 64: 4973–4979.

    Article  CAS  Google Scholar 

  35. Curti A, Isidori A, Ferri E, Terragna C, Neyroz P, Cellini C et al. Generation of dendritic cells from positively selected CD14+ monocytes for anti-tumor immunotherapy. Leuk Lymphoma 2004; 45: 1419–1428.

    Article  CAS  Google Scholar 

  36. Motta MR, Castellani S, Rizzi S, Curti A, Gubinelli F, Fogli M et al. Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination. Br J Haematol 2003; 121: 240–250.

    Article  Google Scholar 

  37. Goddard RV, Prentice AG, Copplestone JA, Kaminski ER . Generation in vitro of B-cell chronic lymphocytic leukaemia-proliferative and specific HLA class-II-restricted cytotoxic T-cell responses using autologous dendritic cells pulsed with tumour cell lysate. Clin Exp Immunol 2001; 126: 16–28.

    Article  CAS  Google Scholar 

  38. Orsini E, Pasquale A, Maggio R, Calabrese E, Mauro FR, Giammartini E et al. Phenotypic and functional characterization of monocyte-derived dendritic cells in chronic lymphocytic leukaemia patients: influence of neoplastic CD19 cells in vivo and in vitro. Br J Haematol 2004; 125: 720–728.

    Article  Google Scholar 

  39. Kokhaei P, Adamson L, Palma M, Osterborg A, Pisa P, Choudhury A et al. Generation of DC-based vaccine for therapy of B-CLL patients. Comparison of two methods for enriching monocytic precursors. Cytotherapy 2006; 8: 318–326.

    Article  CAS  Google Scholar 

  40. Kalady MF, Onaitis MW, Emani S, Abdel-Wahab Z, Tyler DS, Pruitt SK . Sequential delivery of maturation stimuli increases human dendritic cell IL-12 production and enhances tumor antigen-specific immunogenicity. J Surg Res 2004; 116: 24–31.

    Article  CAS  Google Scholar 

  41. Pützer BM, Hitt M, Muller WJ, Emtage P, Gauldie J, Graham FL . Interleukin 12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression. Proc Natl Acad Sci USA 1997; 94: 10889–10894.

    Article  Google Scholar 

  42. Murphy GP, Tino WT, Holmes EH, Boynton AL, Erickson SJ, Bowes VA et al. Measurement of prostate-specific membrane antigen in the serum with a new antibody. Prostate 1996; 28: 266–271.

    Article  CAS  Google Scholar 

  43. Chang AE, Redman BG, Whitfield JR, Nickoloff BJ, Braun TM, Lee PP et al. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 2002; 8: 1021–1032.

    CAS  Google Scholar 

  44. Lee JJ, Kook H, Park MS, Nam JH, Choi BH, Song WH et al. Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher 2004; 19: 66–70.

    Article  Google Scholar 

  45. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924.

    CAS  Google Scholar 

  46. De Fanis U, Romano C, Dalla Mora L, Sellitto A, Guastafierro S, Tirelli A et al. Differences in constitutive and activation-induced expression of CD69 and CD95 between normal and chronic lymphocytic leukemia B cells. Oncol Rep 2003; 10: 653–658.

    Google Scholar 

  47. Tinhofer I, Marschitz I, Kos M, Henn T, Egle A, Villunger A et al. Differential sensitivity of CD4+ and CD8+ T lymphocytes to the killing efficacy of Fas (Apo-1/CD95) ligand+ tumor cells in B chronic lymphocytic leukemia. Blood 1998; 91: 4273–4281.

    CAS  Google Scholar 

  48. Mutis T, Aarts-Riemens T, Verdonck LF . The association of CD25 expression on donor CD8+ and CD4+ T cells with graft-versus-host disease after donor lymphocyte infusions. Haematologica 2005; 90: 1389–1395.

    Google Scholar 

  49. Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 2006; 108: 1291–1297.

    Article  CAS  Google Scholar 

  50. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633.

    Article  CAS  Google Scholar 

  51. Gitelson E, Hammond C, Mena J, Lorenzo M, Buckstein R, Berinstein NL et al. Chronic lymphocytic leukemia-reactive T cells during disease progression and after autologous tumor cell vaccines. Clin Cancer Res 2003; 9: 1656–1665.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by State Committee for Scientific Research, grant No. 2 PO5B 06330. We thank Ms Marlies Götz for taking care of editing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hus, I., Schmitt, M., Tabarkiewicz, J. et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 22, 1007–1017 (2008). https://doi.org/10.1038/leu.2008.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.29

Keywords

This article is cited by

Search

Quick links