Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

RNAi-mediated silencing of p190Bcr-Abl inactivates Stat5 and cooperates with imatinib mesylate and 17-allylamino-17-demetoxygeldanamycin in selective killing of p190Bcr-Abl-expressing leukemia cells

Abstract

The 190 kD (p190) and 210 kD (p210) Bcr-Abl proteins are responsible for the pathophysiology of Philadelphia chromosome (Ph)+ leukemia. We applied RNA interference (RNAi) to specific killing of p190+ cells, and determined the optimal sequences for gene silencing in the BCR, junctional and ABL regions of p190, respectively. Then, p190+ and p210+ cells were infected with lentiviral vectors encoding these shRNAs, resulting in efficient killing of p190+ cells, while p210+ cells were only sensitive to shBCR and shABL. In p190-transformed Ba/F3 cells, silencing of p190 specifically inhibited tyrosine phospohorylation of Stat5 prior to their death, but did not affect phosphorylation of Jak2, Akt or MEK1/2. In contrast, downregulation of p190 by their treatment with 17-allylamino-17-demetoxygeldanamycin (17-AAG) was associated with reduced protein levels of Jak2, Akt and MEK1/2. shRNA targeting p190 collaborated additively with imatinib and 17-AAG in growth inhibition of Ba/F3-p190wt and imatinib-resistant Ba/F3-p190Y253 H cells. Collectively, RNAi-mediated silencing of p190 is a promising option both for delineating signal transduction and for therapeutic application in 190+ leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  2. Melo JV . The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996; 88: 2375–2384.

    CAS  PubMed  Google Scholar 

  3. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  4. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7: 129–141.

    Article  CAS  PubMed  Google Scholar 

  5. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004; 47: 6658–6661.

    Article  CAS  PubMed  Google Scholar 

  6. von Bubnoff N, Peschel C, Duyster J . Resistance of Philadelphia-chromosome positive leukemia towards the kinase inhibitor imatinib (STI571, Glivec): a targeted oncoprotein strikes back. Leukemia 2003; 17: 829–838.

    Article  CAS  PubMed  Google Scholar 

  7. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  8. Soda Y, Tani K, Bai Y, Saiki M, Chen M, Izawa K et al. A novel maxizyme vector targeting a bcr-abl fusion gene induced specific cell death in Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 2004; 104: 356–363.

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  10. Hannon GJ . RNA interference. Nature 2002; 418: 244–251.

    Article  CAS  PubMed  Google Scholar 

  11. Wilda M, Fuchs U, Wossmann W, Borkhardt A . Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21: 5716–5724.

    Article  CAS  PubMed  Google Scholar 

  12. Wohlbold L, van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 2003; 102: 2236–2239.

    Article  CAS  PubMed  Google Scholar 

  13. Li MJ, McMahon R, Snyder DS, Yee JK, Rossi JJ . Specific killing of Ph+ chronic myeloid leukemia cells by a lentiviral vector-delivered anti-bcr/abl small hairpin RNA. Oligonucleotides 2003; 13: 401–409.

    Article  CAS  PubMed  Google Scholar 

  14. Scherr M, Battmer K, Schultheis B, Ganser A, Eder M . Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy. Gene Therapy 2005; 12: 12–21.

    Article  CAS  PubMed  Google Scholar 

  15. Wohlbold L, van der Kuip H, Moehring A, Granot G, Oren M, Vornlocher HP et al. All common p210 and p190 Bcr-abl variants can be targeted by RNA interference. Leukemia 2005; 19: 290–292.

    Article  CAS  PubMed  Google Scholar 

  16. Bai Y, Soda Y, Izawa K, Tanabe T, Kang X, Tojo A et al. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector. Gene Therapy 2003; 10: 1446–1457.

    Article  CAS  PubMed  Google Scholar 

  17. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  18. Nimmanapalli R, O′Bryan E, Bhalla K . Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61: 1799–1804.

    CAS  PubMed  Google Scholar 

  19. Nimmanapalli R, O′Bryan E, Huang M, Bali P, Burnette PK, Loughran T et al. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2002; 62: 5761–5769.

    CAS  PubMed  Google Scholar 

  20. Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC . Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 1991; 65: 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartzberg PL, Stall AM, Hardin JD, Bowdish KS, Humaran T, Boast S et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 1991; 65: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  22. Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B et al. Increased neutrophil respiratory burst in bcr-null mutants. Cell 1995; 80: 719–728.

    Article  CAS  PubMed  Google Scholar 

  23. Harata M, Soda Y, Tani K, Ooi J, Takizawa T, Chen M et al. CD19-targeting liposomes containing imatinib efficiently kill Philadelphia chromosome-positive acute lymphoblastic leukemia cells. Blood 2004; 104: 1442–1449.

    Article  CAS  PubMed  Google Scholar 

  24. Prodromou C, Roe SM, O′Brien R, Ladbury JE, Piper PW, Pearl LH . Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 1997; 90: 65–75.

    Article  CAS  PubMed  Google Scholar 

  25. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    Article  CAS  PubMed  Google Scholar 

  26. Withey JM, Harvey AJ, Crompton MR . RNA interference targeting of Bcr-Abl increases chronic myeloid leukemia cell killing by 17-allylamino-17-demethoxygeldanamycin. Leuk Res 2006; 30: 553–560.

    Article  CAS  PubMed  Google Scholar 

  27. Radujkovic A, Schad M, Topaly J, Veldwijk MR, Laufs S, Schultheis BS et al. Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL--Inhibition of P-glycoprotein function by 17-AAG. Leukemia 2005; 19: 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  28. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL . Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254.

    CAS  PubMed  Google Scholar 

  29. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  30. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 2006; 107: 4898–4906.

    Article  CAS  PubMed  Google Scholar 

  31. Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A et al. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 2006; 107: 3279–3287.

    Article  CAS  PubMed  Google Scholar 

  32. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: 1229–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin sJD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000; 95: 2118–2125.

    CAS  PubMed  Google Scholar 

  34. Wilson-Rawls J, Xie S, Liu J, Laneuville P, Arlinghaus RB . P210 Bcr-Abl interacts with the interleukin 3 receptor beta(c) subunit and constitutively induces its tyrosine phosphorylation. Cancer Res 1996; 56: 3426–3430.

    CAS  PubMed  Google Scholar 

  35. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr IM Verma (Salk Institute, La Jolla, CA, USA) and Cell Genesys for providing HIV vector constructs. We are indebted to Mr K Takahashi, Ms S Suzuki and Ms M Oiwa for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tojo.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futami, M., Hatano, T., Soda, Y. et al. RNAi-mediated silencing of p190Bcr-Abl inactivates Stat5 and cooperates with imatinib mesylate and 17-allylamino-17-demetoxygeldanamycin in selective killing of p190Bcr-Abl-expressing leukemia cells. Leukemia 22, 1131–1138 (2008). https://doi.org/10.1038/leu.2008.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.60

Keywords

Search

Quick links