Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapy

A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability

Abstract

Gemtuzumab ozogamicin (GO, Mylotarg) is a targeted therapeutic agent in which an anti-CD33 antibody is chemically coupled to a highly cytotoxic calicheamicin derivative through a hydrolysable linker. GO has improved the treatment outcome for a subgroup of acute myeloid leukemia (AML) patients, but its use is associated with severe myelosuppression and hepatotoxicity. Here, we report on a novel anti-leukemia agent, designated scFvCD33:sTRAIL, in which an anti-CD33 single chain fragment of variable regions (scFv) antibody fragment is genetically linked to soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). Normal CD33-positive monocytes were fully resistant to prolonged treatment with scFvCD33:sTRAIL, whereas treatment with GO resulted in substantial cytotoxicity. The activity of scFvCD33:sTRAIL towards AML cells was up to 30-fold higher than GO. The CD33-restricted anti-leukemia activity of scFvCD33:sTRAIL remained stable during prolonged storage at 37 °C, whereas GO showed a rapid increase in CD33-independent cytotoxicity. Moreover, scFvCD33:sTRAIL showed potent anti-leukemia activity towards CD33+ CML cells when treatment was combined with the Bcr-Abl tyrosine kinase inhibitor, Gleevec. Importantly, ex vivo treatment of patient-derived CD33+ AML tumor cells with scFvCD33:sTRAIL resulted in potent apoptosis induction that was enhanced by valproic acid, mitoxantrone and 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG). Taken together, scFvCD33:sTRAIL is superior to GO in terms of tumor selectivity, activity and stability, warranting its further development for the treatment of CD33-positive leukemias.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Tallman MS, Gilliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  2. Larson RA, Stone RM, Mayer RJ, Schiffer CA . Fifty years of clinical research by the leukemia committee of the cancer and leukemia group B. Clin Cancer Res 2006; 12 (Part 2): 3556s–3563s.

    Article  CAS  PubMed  Google Scholar 

  3. Stone RM . The difficult problem of acute myeloid leukemia in the older adult. CA Cancer J Clin 2002; 52: 363–371.

    Article  PubMed  Google Scholar 

  4. Dinndorf PA, Andrews RG, Benjamin D, Ridgway D, Wolff L, Bernstein ID . Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 1986; 67: 1048–1053.

    CAS  PubMed  Google Scholar 

  5. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 2001; 7: 1490–1496.

    CAS  PubMed  Google Scholar 

  6. Larson RA, Sievers EL, Stadtmauer EA, Lowenberg B, Estey EH, Dombret H et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005; 104: 1442–1452.

    Article  CAS  PubMed  Google Scholar 

  7. Zein N, Sinha AM, McGahren WJ, Ellestad GA . Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988; 240: 1198–1201.

    Article  CAS  PubMed  Google Scholar 

  8. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB . Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002; 99: 2310–2314.

    Article  CAS  PubMed  Google Scholar 

  9. Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001; 92: 406–413.

    Article  CAS  PubMed  Google Scholar 

  10. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  12. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  13. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  14. Conticello C, Adamo L, Vicari L, Giuffrida R, Iannolo G, Anastasi G et al. Antitumor activity of bortezomib alone and in combination with trail in human acute myeloid leukemia. Acta Haematol 2008; 120: 19–30.

    Article  CAS  PubMed  Google Scholar 

  15. Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G et al. The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 2000; 275: 32208–32213.

    Article  CAS  PubMed  Google Scholar 

  16. Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH et al. Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 2005; 65: 3380–3388.

    Article  CAS  PubMed  Google Scholar 

  17. Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF et al. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 2005; 280: 10025–10033.

    Article  CAS  PubMed  Google Scholar 

  18. Bremer E, Samplonius D, Kroesen BJ, van Genne L, de Leij L, Helfrich W . Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia 2004; 6: 636–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W . Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 2004; 109: 281–290.

    Article  CAS  PubMed  Google Scholar 

  20. Bremer E, de Bruyn M, Samplonius DF, Bijma T, Ten Cate B, de Leij LF et al. Targeted delivery of a designed sTRAIL mutant results in superior apoptotic activity towards EGFR-positive tumor cells. J Mol Med 2008; 86: 909–924.

    Article  CAS  PubMed  Google Scholar 

  21. Schwemmlein M, Peipp M, Barbin K, Saul D, Stockmeyer B, Repp R et al. A CD33-specific single-chain immunotoxin mediates potent apoptosis of cultured human myeloid leukaemia cells. Br J Haematol 2006; 133: 141–151.

    Article  CAS  PubMed  Google Scholar 

  22. Cockett MI, Bebbington CR, Yarranton GT . High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (NY) 1990; 8: 662–667.

    CAS  Google Scholar 

  23. Power BE, Hudson PJ . Synthesis of high avidity antibody fragments (scFv multimers) for cancer imaging. J Immunol Methods 2000; 242: 193–204.

    Article  CAS  PubMed  Google Scholar 

  24. Kortt AA, Dolezal O, Power BE, Hudson PJ . Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol Eng 2001; 18: 95–108.

    Article  CAS  PubMed  Google Scholar 

  25. Stieglmaier J, Bremer E, Kellner C, Liebig TM, Ten Cate B, Peipp M et al. Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 2008; 57: 233–246.

    Article  PubMed  Google Scholar 

  26. Haidar JH, Shamseddine A, Salem Z, Mrad YA, Nasr MR, Zaatari G et al. Loss of CD20 expression in relapsed lymphomas after rituximab therapy. Eur J Haematol 2003; 70: 330–332.

    Article  PubMed  Google Scholar 

  27. Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K et al. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin's lymphoma: a retrospective review. Br J Haematol 2002; 119: 412–416.

    Article  CAS  PubMed  Google Scholar 

  28. Kuendgen A, Knipp S, Fox F, Strupp C, Hildebrandt B, Steidl C et al. Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 2005; 84 (Suppl 13): 61–66.

    Article  CAS  PubMed  Google Scholar 

  29. Tang R, Faussat AM, Majdak P, Perrot JY, Chaoui D, Legrand O et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia 2004; 18: 1246–1251.

    Article  CAS  PubMed  Google Scholar 

  30. Al Shaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K et al. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol 2008; 141: 483–493.

    Article  CAS  PubMed  Google Scholar 

  31. Fiskus W, Rao R, Fernandez P, Herger B, Yang Y, Chen J et al. Molecular and biologic characterization and drug sensitivity of pan-histone deacetylase inhibitor-resistant acute myeloid leukemia cells. Blood 2008; 112: 2896–2905.

    Article  CAS  PubMed  Google Scholar 

  32. Barbany G, Hoglund M, Simonsson B . Complete molecular remission in chronic myelogenous leukemia after imatinib therapy. N Engl J Med 2002; 347: 539–540.

    Article  PubMed  Google Scholar 

  33. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 2005; 105: 1246–1255.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J Dokter-Fokkens, G Mesander and D Jager for their excellent technical assistance. This work was supported by grants from the Dutch Cancer Society (RUG 2002-2668 and 2005-3358) to WH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Helfrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Cate, B., Bremer, E., de Bruyn, M. et al. A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia 23, 1389–1397 (2009). https://doi.org/10.1038/leu.2009.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.34

Keywords

This article is cited by

Search

Quick links