Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors

Abstract

It is an open question whether in multiple myeloma (MM) bone marrow stromal cells contain genomic alterations, which may contribute to the pathogenesis of the disease. We conducted an array-based comparative genomic hybridization (array-CGH) analysis to compare the extent of unbalanced genomic alterations in mesenchymal stem cells from 21 myeloma patients (MM-MSCs) and 12 normal donors (ND-MSCs) after in vitro culture expansion. Whereas ND-MSCs were devoid of genomic imbalances, several non-recurrent chromosomal gains and losses (>1 Mb size) were detected in MM-MSCs. Using real-time reverse transcription PCR, we found correlative deregulated expression for five genes encoded in regions for which genomic imbalances were detected using array-CGH. In addition, only MM-MSCs showed a specific pattern of ‘hot-spot’ regions with discrete (<1 Mb) genomic alterations, some of which were confirmed using fluorescence in situ hybridization (FISH). Within MM-MSC samples, unsupervised cluster analysis did not correlate with particular clinicobiological features of MM patients. We also explored whether cytogenetic abnormalities present in myelomatous plasma cells (PCs) were shared by matching MSCs from the same patients using FISH. All MM-MSCs were cytogenetically normal for the tested genomic alterations. Therefore we cannot support a common progenitor for myeloma PCs and MSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC . Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618.

    Article  CAS  PubMed  Google Scholar 

  2. San Miguel JF, Mateos MV, Pandiella A . Novel drugs for multiple myeloma. Hematology (EHA Educ Program) 2006; 2: 205–211.

    Google Scholar 

  3. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  5. Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG et al. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 2007; 21: 1007–1034, vii–viii.

    Article  PubMed  Google Scholar 

  6. Podar K, Richardson PG, Hideshima T, Chauhan D, Anderson KC . The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 2007; 20: 597–612.

    Article  CAS  PubMed  Google Scholar 

  7. Yasui H, Hideshima T, Richardson PG, Anderson KC . Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol 2006; 132: 385–397.

    CAS  PubMed  Google Scholar 

  8. Esteve FR, Roodman GD . Pathophysiology of myeloma bone disease. Best Pract Res Clin Haematol 2007; 20: 613–624.

    Article  CAS  PubMed  Google Scholar 

  9. Barille-Nion S, Barlogie B, Bataille R, Bergsagel PL, Epstein J, Fenton RG et al. Advances in biology and therapy of multiple myeloma. Hematology Am Soc Hematol Educ Program 2003, 248–278.

    Article  Google Scholar 

  10. Minguell JJ, Erices A, Conget P . Mesenchymal stem cells. Exp Biol Med (Maywood) 2001; 226: 507–520.

    Article  CAS  Google Scholar 

  11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  12. Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne MN, Crinquette A et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 2007; 21: 158–163.

    Article  CAS  PubMed  Google Scholar 

  13. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21: 1079–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X et al. Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma 2007; 48: 2032–2041.

    Article  CAS  PubMed  Google Scholar 

  15. Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM . Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 2001; 91: 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  16. Zdzisinska B, Bojarska-Junak A, Dmoszynska A, Kandefer-Szerszen M . Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz) 2008; 56: 207–221.

    Article  CAS  Google Scholar 

  17. Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006; 135: 688–692.

    Article  CAS  PubMed  Google Scholar 

  18. Huss R, Hong DS, McSweeney PA, Hoy CA, Deeg HJ . Differentiation of canine bone marrow cells with hemopoietic characteristics from an adherent stromal cell precursor. Proc Natl Acad Sci USA 1995; 92: 748–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huss R, Moosmann S . The co-expression of CD117 (c-kit) and osteocalcin in activated bone marrow stem cells in different diseases. Br J Haematol 2002; 118: 305–312.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Knieling G, Vohwinkel G, Martinez T, Kuse R, Hossfeld DK et al. Origin of stroma cells in long-term bone marrow cultures from patients with acute myeloid leukemia. Ann Hematol 1999; 78: 305–314.

    Article  CAS  PubMed  Google Scholar 

  21. Chen W, Houldsworth J, Olshen AB, Nanjangud G, Chaganti S, Venkatraman ES et al. Array comparative genomic hybridization reveals genomic copy number changes associated with outcome in diffuse large B-cell lymphomas. Blood 2006; 107: 2477–2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakao K, Mehta KR, Fridlyand J, Moore DH, Jain AN, Lafuente A et al. High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis 2004; 25: 1345–1357.

    Article  CAS  PubMed  Google Scholar 

  23. Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 2002; 99: 12963–12968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 2005; 24: 4232–4242.

    Article  CAS  PubMed  Google Scholar 

  25. Weiss MM, Kuipers EJ, Postma C, Snijders AM, Siccama I, Pinkel D et al. Genomic profiling of gastric cancer predicts lymph node status and survival. Oncogene 2003; 22: 1872–1879.

    Article  CAS  PubMed  Google Scholar 

  26. Pelham RJ, Rodgers L, Hall I, Lucito R, Nguyen KC, Navin N et al. Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proc Natl Acad Sci USA 2006; 103: 19848–19853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    Article  CAS  PubMed  Google Scholar 

  28. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM, Robledo C, Villaron EM, Hernández-Campo P et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia 2009, doi:010.1038/leu.2008.1361 [E-pub ahead of print].

    Article  PubMed  PubMed Central  Google Scholar 

  29. Herrero J, Al-Shahrour F, Diaz-Uriarte R, Mateos A, Vaquerizas JM, Santoyo J et al. GEPAS: a web-based resource for microarray gene expression data analysis. Nucleic Acids Res 2003; 31: 3461–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ng G, Huang J, Roberts I, Coleman N . Defining ploidy-specific thresholds in array comparative genomic hybridization to improve the sensitivity of detection of single copy alterations in cell lines. J Mol Diagn 2006; 8: 449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  PubMed  Google Scholar 

  32. Hernandez JM, Gonzalez MB, Granada I, Gutierrez N, Chillon C, Ramos F et al. Detection of inv(16) and t(16;16) by fluorescence in situ hybridization in acute myeloid leukemia M4Eo. Haematologica 2000; 85: 481–485.

    PubMed  Google Scholar 

  33. De Preter K, Speleman F, Combaret V, Lunec J, Laureys G, Eussen BH et al. Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay. Mod Pathol 2002; 15: 159–166.

    Article  PubMed  Google Scholar 

  34. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    Article  CAS  PubMed  Google Scholar 

  35. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  36. Tlsty TD, Coussens LM . Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006; 1: 119–150.

    Article  CAS  PubMed  Google Scholar 

  37. Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL, Eng C . Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res 2004; 64: 7231–7236.

    Article  CAS  PubMed  Google Scholar 

  38. Weber F, Shen L, Fukino K, Patocs A, Mutter GL, Caldes T et al. Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet 2006; 78: 961–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA . Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 2000; 60: 2562–2566.

    CAS  PubMed  Google Scholar 

  40. Condon MS . The role of the stromal microenvironment in prostate cancer. Semin Cancer Biol 2005; 15: 132–137.

    Article  PubMed  Google Scholar 

  41. Hill R, Song Y, Cardiff RD, Van Dyke T . Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005; 123: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  42. Tuhkanen H, Anttila M, Kosma VM, Heinonen S, Juhola M, Helisalmi S et al. Frequent gene dosage alterations in stromal cells of epithelial ovarian carcinomas. Int J Cancer 2006; 119: 1345–1353.

    Article  CAS  PubMed  Google Scholar 

  43. Ricci F, Kern SE, Hruban RH, Iacobuzio-Donahue CA . Stromal responses to carcinomas of the pancreas: juxtatumoral gene expression conforms to the infiltrating pattern and not the biologic subtype. Cancer Biol Ther 2005; 4: 302–307.

    Article  CAS  PubMed  Google Scholar 

  44. Weber F, Xu Y, Zhang L, Patocs A, Shen L, Platzer P et al. Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA 2007; 297: 187–195.

    Article  CAS  PubMed  Google Scholar 

  45. Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 2007; 211: 121–130.

    Article  CAS  PubMed  Google Scholar 

  46. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007; 67: 9142–9149.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang ZX, Guan LX, Zhang K, Wang S, Cao PC, Wang YH et al. Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol Int 2007; 31: 645–648.

    Article  CAS  PubMed  Google Scholar 

  48. Muller I, Vaegler M, Holzwarth C, Tzaribatchev N, Pfister SM, Schutt B et al. Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis. Leukemia 2008; 22: 2054–2061.

    Article  CAS  PubMed  Google Scholar 

  49. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 2007; 25: 207–215.

    Article  CAS  PubMed  Google Scholar 

  50. Lastowska M, Cotterill S, Bown N, Cullinane C, Variend S, Lunec J et al. Breakpoint position on 17q identifies the most aggressive neuroblastoma tumors. Genes Chromosomes Cancer 2002; 34: 428–436.

    Article  CAS  PubMed  Google Scholar 

  51. Barlund M, Tirkkonen M, Forozan F, Tanner MM, Kallioniemi O, Kallioniemi A . Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer 1997; 20: 372–376.

    Article  CAS  PubMed  Google Scholar 

  52. Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP . Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 1998; 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  53. Kalikin LM, George RA, Keller MP, Bort S, Bowler NS, Law DJ et al. An integrated physical and gene map of human distal chromosome 17q24-proximal 17q25 encompassing multiple disease loci. Genomics 1999; 57: 36–42.

    Article  CAS  PubMed  Google Scholar 

  54. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W . Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 2007; 1106: 262–271.

    Article  PubMed  Google Scholar 

  55. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006; 9: 313–325.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Ms Montserrat Martín, Sara González, Irene Rodríguez, Isabel Isidro, Pilar Hernández, Almudena Martín, Montserrat Hernández, Sandra Muntión and Irene Real for their excellent technical work and assistance. We also thank the Genomic Unit (Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC) for spotting, hybridization and scanning of CGH arrays. This work was partially supported by grants from ‘Proyecto Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León (Consejería de Sanidad JCyL–ISCIII)’, the Spanish Myeloma Network Program (RD06/0020/0006), and ‘Grupos de Excelencia de Castilla y León’ (Ref. GR33). MG was supported by the ‘Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I)’ and the ISCIII-FIS (CP 05/0279). AG-G was supported by the ‘Proyecto Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León (Consejería de Sanidad JCyL–ISCIII)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Garayoa.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garayoa, M., Garcia, J., Santamaria, C. et al. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23, 1515–1527 (2009). https://doi.org/10.1038/leu.2009.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.65

Keywords

This article is cited by

Search

Quick links